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ABSTRACT. Workers with variable earnings and flexible hours offer unique opportunities to

evaluate intertemporal labor supply elasticities. Existing static analyses, however, have generated

well-known puzzles, suggesting evidence of downward sloping labor supply curves. Using a large

sample of shifts of New York City taxicab drivers, we estimate a dynamic optimal stopping model

of drivers’ work times and quitting decisions. Our analysis demonstrates that patterns previously

interpreted as behavioral biases arise from rational, forward-looking optimization. We use our

model to provide new estimates of individual earnings elasticities and show that taxi drivers have

similar elasticities to workers in markets where experimental evidence has been obtained. Finally,

we demonstrate that market-level labor supply responses to fare changes are much smaller than

individual-level responses due to equilibrium effects. This finding suggests that recent estimates

of the benefits to recent earnings legislation in the taxi and ride-hail industries are overstated.
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1. INTRODUCTION

Workers with variable earnings and flexible hours offer unique opportunities to evaluate

intertemporal labor supply elasticities. Using detailed trip-level data from New York City taxicab

drivers, we document two novel empirical patterns that resolve longstanding puzzles in the

labor supply literature. First, drivers take more frequent breaks as their shifts progress, leading

to mechanical declines in average hourly earnings and a spurious correlation between hours

worked and wages. Second, high-paying trips to outer boroughs are systematically followed by

periods of low earnings due to reduced passenger density in those areas, leading to negative

serial correlation in hourly wages. These patterns explain why previous static analyses have

generated well-known puzzles, suggesting evidence of downward sloping labor supply curves.

We formalize these insights through a dynamic optimal stopping model of drivers’ work

times and quitting decisions. Our data-driven modeling approach allows us to avoid imposing

assumptions about the equilibrium search and matching process while still capturing the rich

patterns of serial correlation in earnings. The estimated model demonstrates that once we

account for forward-looking driver behavior, the empirical patterns previously attributed to

behavioral biases can be fully rationalized within a neoclassical framework. We further use our

model to provide new estimates of individual earnings elasticities and show that taxi drivers

exhibit similar elasticities to workers in markets where experimental evidence has been obtained.

Studies using observational data aggregated across multiple industries and spanning several

years have encountered challenges in measuring labor supply elasticities because observed

wage changes typically do not hold all else equal. As access to rich micro-data has become more

available, economists have turned to flexible-work settings, in which workers have the ability

to immediately adjust their work time in response to changes in earnings opportunities. Such

settings offer a clearer path to estimating substitution effects. Yet, the literature has raised several

new questions of methodology and interpretation and has therefore not settled on how to obtain

the elasticities of interest. A seminal paper is Camerer, Babcock, Loewenstein and Thaler (1997),

which finds evidence for negative income elasticities of labor supply among taxi drivers – that

is, drivers appear to work fewer hours when faced with higher wage rates. Such a finding

is inconsistent with textbook neoclassical labor supply models and instead congruent with

alternative “behavioral” labor supply models, such as income targeting, in which agents with
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flexible hours set an income target and work until the target is reached. This work continues to

be highly influential and widely cited in labor economics and public finance, generating a large

follow-up literature that has corroborated, expanded or challenged these findings (Ashenfelter,

Doran and Schaller (2010), Duong, Chu and Yao (2022), Farber (2005, 2008, 2015), Crawford and

Meng (2011), Thakral and Tô (2021)).

Our first contribution is that our approach explains multiple puzzles in the literature: both

the negative wage elasticities, as recovered in Camerer et al. (1997) as well as the fact that drivers

appear more likely to quit after earnings shocks late into the shift, a “recency” bias documented

in Thakral and Tô (2021). In the case of Camerer et al. (1997), in which authors analyze end-of-

shift data and regress hours worked on average daily wages, we find that the declining relative

productivity of drivers on longer shifts mechanically leads to negative wage elasticities; a driver

with a longer shift will, on average, end the day at a lower productivity state than a similar

driver who ends earlier, generating a correlation between low average earnings per hour and

longer work hours. In the case of Thakral and Tô (2021), the authors regress drivers’ binary

decisions to quit on cumulative earnings interacted with the time of day in which the earnings

accrued. Their estimates show that drivers exhibit a higher probability of quitting associated

with late-in-shift earnings shocks. We find that the particularly large negative autocorrelation of

earnings on long trips, for example trips from the New York boroughs of Manhattan to Queens

or Bronx, produces these effects. Long trips appear in the data as earnings shocks and lead to

subsequently low expected future earnings. Viewed through the lens of our dynamic stopping

model, a positive current earnings shock imposes a less attractive future path of earnings relative

to the time cost of continuing to work, leading to a higher probability of quitting for the day. We

validate our model by showing that it is capable of generating the patterns in the data that have

been attributed to behavioral explanations. Our results therefore demonstrate that the apparent

non-standard behavior can be rationalized as optimal decision making.

A second contribution is to provide methodology to estimate the short-run inter-temporal

substitutability of labor and leisure, or the Frisch elasticity of labor supply, from observational

data of dynamically optimizing agents. Our approach treats drivers’ labor supply decisions as

emerging from an optimal stopping problem, where drivers weigh expected future earnings
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against the opportunity costs of continuing to work. While reduced-form approaches could at-

tempt to control for forward-looking behavior through various proxy controls, this is inherently

difficult since forward-looking behavior involves a value function that recursively depends on

agents’ optimal decisions. Our dynamic model addresses this difficulty by providing a system-

atic framework that accounts for how drivers incorporate the forward-looking continuation

value into their decisions. While our model is consistent with equilibrium models of search,

matching and spatial sorting in the taxi industry, it offers a simpler and more implementable

approach that avoids many additional modeling assumptions. Our specific research questions

do not require treating most aspects of these equilibrium outcomes as endogenous. Instead, we

are able to specify the model in a tractable and parsimonious way for our counterfactuals of

interest, allowing us to estimate driver preferences as a single-agent dynamic problem.

We use our estimated model to explore a key policy question: how do regulated fare increases

affect driver earnings? This analysis serves two purposes. First, it demonstrates that labor

supply elasticities with respect to market-wide price changes are distinct from elasticities with

respect to individual earnings variation - a distinction overlooked in some of the literature.

Second, it shows how our framework can inform policy decisions, such as the New York Taxi

and Limousine Commission’s recent fare increases designed to raise driver earnings. The

Commission estimates that a January 2023 fare change, raising trip prices by 23%, will lead to a

33% increase in driver earnings. This estimate necessarily implies that labor supply elasticities

with respect to fares must be greater than 0.40. We evaluate this elasticity by using data spanning

a comparable change, a fare hike that raised average prices by 18% in September 2012. Our

methodology allows us to analyze these effects without explicitly modeling the interaction of

supply and demand, instead exploiting changes in earnings transition densities before and

after the policy. We find that the elasticity of labor supply with respect to market prices is

approximately 0.12, around one sixth of our overall Frisch elasticity estimates. This implies

that the benefits to individual drivers of a large price increase will be substantially less than

predicted by regulators.

Literature. A growing literature has arisen aiming to estimate labor supply elasticities in

markets where labor supply is continuously adjustable. Several of these papers have studied

the taxi industry, because taxi drivers are typically able to choose their own hours. Moreover,
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as automated data collection has been implemented to meet regulatory standards, detailed

trip data has become available in some of the largest U.S. taxi markets.1 Camerer et al. (1997)

analyzes hand-collected data from New York City and considers the hours worked during

individual driver shifts. The authors conduct a series of regressions of log hours worked on

the log of average daily wages and find evidence for negative wage elasticities. The authors

argue that negative elasticities are consistent with income-targeting on the part of drivers: for

example, a labor supply policy of the form “I will work today until I earn $200." Farber (2005,

2008, 2015) consider static optimal stopping models of labor supply. The first paper develops a

stopping rule model which explores similar forces to our model, showing that drivers’ stopping

is most reliably predicted by hours instead of income. The latter two papers integrate reference-

dependent utility, which is the notion that agents’ utility is not only a function of income but also

reference-points or targets, where the marginal utility of income increases more quickly before

the target is met than after it is met. While Farber (2008) finds mixed evidence for the existence of

reference-dependence, Farber (2015) uses more comprehensive data and finds stronger evidence

that drivers have, on average, upward sloping earnings elasticities. Nevertheless, Farber finds

that just under a third of drivers exhibit behavior consistent with negative elasticities. Using

data on taxi inspections, Ashenfelter et al. (2010) finds that drivers who worked before and

after fare hikes tended to work slightly less on average afterwards, suggesting a small negative

earnings elasticity.2 Our paper highlights new data evidence that drivers’ relative earnings

productivity tends to decline with hours worked. This fact generates a downward bias in the

elasticity estimate in the wage regressions due to a selection effect, one which may reconcile these

1There is also an older empirical literature that recovers the elasticities of intertemporal substitution as a part
of estimating lifecycle models of labor supply, for example Heckman and MaCurdy (1980), Browning et al. (1985),
MaCurdy (1981), and Altonji (1986). The data used are highly aggregated and often cross-sectional and cross-industry
in nature. These studies generally predict small positive labor supply adjustments as a result of increased wage rates.
Within the literature, authors regularly highlight significant data limitations and modeling assumptions: for example
one must assume that workers are free to choose their own hours and that wage variation is exogenous, which is
unlikely to hold in the analyzed settings. It is also a challenge to separate wealth effects from substitution effects,
even when long-run panels are used. Nevertheless, our work corroborates the findings of positive substitution
elasticities but at a much finer, intra-daily scale instead of workers’ lifecycle.

2There are additional studies outside of the context of taxis which consider related questions: Fehr and Goette
(2007) demonstrate positive labor supply elasticities in an experiment providing higher payments to bicycle messen-
gers. Andersen, Brandon, Gneezy and List (2014) also show positive labor supply elasticities in an experiment among
market vendors in India, explicitly testing for and rejecting reference-dependence. Oettinger (1999) documents an
equilibrium increase in labor effort on high demand days among stadium vendors.
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disparate findings. We further show through our model that the key puzzles are reproducible

when simulating data directly from the model.

A newer thread in the literature presents evidence that drivers’ labor supply behavior is

dependent on the time of day in which they earn revenue. Crawford and Meng (2011) specifies

and estimates a dynamic model of labor supply incorporating reference-dependence in both

income and hours-worked during a shift, finding that drivers’ types of reference-dependence

depends on whether their earnings are high or low early in the shift relative to their long-run

average. Thakral and Tô (2021) also takes up the question of whether there is a timing dimension

to behavioral biases in drivers stopping decisions, showing that more recent income is a stronger

determinant of quitting than income earned earlier in a shift. Our paper proposes an explanation

for this behavior by showing that earnings shocks are associated with subsequently negative

earnings opportunities. Incorporating this fact into our model, we show that we can reproduce

the apparent time-inconsistent behavior.

We also contribute to a literature on structural models of labor supply and market equilibrium

in taxi and ride-hail settings. Our model is closely related to the taxi labor supply model of

Frechette, Lizzeri and Salz (2019), in which taxi drivers decide how long to work by weighing

the utility of earning revenue against the disutility of working longer. One important difference

is that we do not model endogenous search frictions or strategic entry, and instead we rely on

non-parametric estimates of the dynamic path of earnings. This data-driven approach captures

the intra-daily dynamics of earnings at more granular level, but at the same time abstracts

from modeling the underlying mechanisms of market clearing. In essence we substitute with

extra data part of the analysis that would otherwise require an additional equilibrium model

of search and matching as well as several assumptions to make such a search and matching

model tractable. Chen, Rossi, Chevalier and Oehlsen (2019) estimate labor supply and the

value of flexibility in the setting of Uber drivers. Because Uber drivers are able to supply labor

in irregular schedules, often as secondary jobs, the labor supply problem is fundamentally
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different from that of professional taxi drivers (Hall and Krueger, 2018).3 The authors focus on

quantifying driver preferences for the flexibility offered by the platform and the opportunity

costs of working at different times of day. Buchholz (2022) considers a model of endogenous

spatial equilibrium among taxi drivers. We do not model drivers’ location choices directly,

however these decisions are embedded in our model’s transition densities, allowing drivers

to account for divergent continuation values associated with distant locations and use these

to condition labor supply decisions. This suggests a useful approach to accommodate spatial

models built from the framework of Lagos (2000), including many additional settings and

applications (e.g. Brancaccio et al. 2020; Castillo 2022; Rosaia 2023), when counterfactuals

address aggregate moments. Petterson (2022) considers a dynamic labor supply model among

taxi drivers to estimate a model of reference dependence. In contrast, our model assumes

no reference dependence and derives predictions that are consistent with static evidence of

reference dependence.

Finally, we contribute to a broad literature that demonstrates how a variety of static empirical

puzzles can be rationalized through dynamic models of firm behavior. Examples of these include

the puzzle of procyclical labor productivity, rationalized in part by models of labor hoarding

among forward-looking firms (Rotemberg and Summers 1990; Burnside et al. 1993; Lagos 2006),

the puzzle of firms pricing below cost, rationalized through models of learning by doing or

predatory pricing (Benkard 2004; Besanko, Doraszelski and Kryukov 2014), and the puzzle that

incurring costly regulations would benefit firms, rationalized through a model of rising rival

entry costs (Ryan, 2012).

In Section 2 we present the data used, document important stylized facts and review the main

findings of past literature on taxi driver labor supply. In Section 3 we present a dynamic model

of drivers’ labor supply decision. In Section 4 we discuss the estimation and identification of our

model. Section 5 provides estimation results and revisits the literature in light of them. Section 6

3A parallel literature examines labor supply in ride-hail settings using experiments, leading to results that echo
our estimates and findings: Angrist et al. (2021) find large and positive labor supply elasticities, while Hall et al. (2023)
study how market-level elasticities differ from individual responses to fare increases, with Caldwell and Oehlsen
(2018) and Christensen and Osman (2023) providing additional evidence on heterogeneous responses across driver
demographics and broader equilibrium effects. Chen, Ding, List and Mogstad (2020) also leverage Uber’s flexible
work arrangements to estimate labor supply parameters.
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uses the estimated model to conduct counterfactuals that measure labor supply elasticity in the

context of both individual and market-wide wage fluctuations. Section 7 concludes.

2. DATA AND EVIDENCE

We start by introducing the dataset and presenting some descriptive results. In 2009, the Taxi

and Limousine Commission of New York City (TLC) initiated the Taxi Passenger Enhancement

Project, which mandated the use of upgraded metering and information technology in all New

York medallion cabs. The technology includes the automated data collection of taxi trip and fare

information. This data set represents a complete record of all trips operated by licensed New

York medallion taxis. We primarily use TLC data on all medallion cab rides given from July 1,

2012 to September 3, 2012, the last day before a fare change. The sample analyzed here consists

of 27,830,861 trips. Data include the exact time and date of pickup and drop-offs, trip distance,

trip time, fare information and car and driver identifiers. Table 1 provides summary statistics

on trips in Panel I and driver shifts in Panel II. In Section 6 we complement this data with two

additional months of trips that occur after the fare change.

Recent work has made broad use of this data set (See, e.g., Haggag et al. (2017), Frechette et al.

(2019), Thakral and Tô (2021), Buchholz (2022)). Earlier research, including work devoted to

explicitly measuring labor supply elasticities, employs smaller samples and less reliable taxi trip

data. While there is continued debate about model specification and the presence of behavioral

biases, prior studies argue that the TLC data obviates most lingering worries about sample size

and measurement error (Farber, 2015).

There are several regulatory statutes governing TLC licensed taxis that are relevant for

analyzing the labor supply of drivers. The TLC divides licenses into several categories, including

yellow taxis, liveries, para-transit, and special charter vehicles. In 2012, yellow taxis represented,

by far, the highest volume of the license classes, providing around 175 million rides per year

among roughly 50,000 drivers and 13,437 cars. In 2013 the TLC began licensing “green cabs” or

“boro cabs”, which grants authorization to pick up passengers outside of Manhattan. Later, they

permitted high-volume for-hire vehicles that include platform-based ride-hail companies such

as Uber and Lyft.
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Yellow taxi medallions are sub-divided into operational types. The most common is the

mini-fleet type, representing about 60% of all yellow taxis, in which companies own multiple

cars with attached medallions and drivers lease the taxi on a daily or weekly basis, paying a

fixed leasing fee subject to regulated caps. Daily leases impose strict shift limitations, where

day-shift drivers are required to return cars to bases, typically located in Queens, by 4-5pm

for the evening shift, and night-shift drivers are required to return the car by 4-5am. The

remaining types involve a driver-owned car and a leased medallion, or a driver-owned car and

driver-owned medallion, neither of which are subject to daily shift restrictions.

Yellow taxis are required to locate passengers through street hail and cannot schedule rides in

advance.4 During the sample period the fare was fixed by the TLC at $2.50 fixed fee plus $2.00

per mile.

Table 1 contains summary statistics for the full sample of trips in Panel I and driver shifts

in Panel II, as well as subsamples by weekday vs. weekend, morning vs. evening shift, and

fleet status. Morning (AM) and evening (PM) shifts are defined similarly to Farber (2015):

AM shifts start between 4am – 10am and PM shifts start between 2pm – 8pm. Fleet status is

not directly observed but can be partially inferred from data. We’re specifically interested in

capturing whether an AM-shift driver is obligated to return the taxi by 5pm, or similarly for a

PM-shift driver at 5am.5 Fleet drivers here are interpreted as daily lease drivers, whereas non

fleet drivers include owner-operators with and without leased medallions as well as fleet drivers

who operate on longer-term leases.6

Panel I shows that nearly all driving yields similar distributions of trips in terms of fares

and duration. However weekdays, afternoon shifts, and non-fleet drivers face slightly higher

fares and longer durations. These differences reflect a slightly lower concentration of central

Manhattan trips. Panel II shows that evening shifts earn drivers about 6% more revenue across

4Permission to engage in app-based e-hailing of yellow taxes, a limited type of scheduling and search aid, was
approved by the TLC in mid-December 2012 and took effect in February 2013.

5Though exact shift times are not recorded, we take shifts to be drivers’ total span of work without breaks longer
than five hours. This definition is adopted by some of the literature using this data set (e.g., Haggag et al. (2017),
Frechette et al. (2019)) and close to the six hour definition used in the rest (e.g., Farber (2015), Thakral and Tô (2021))

6While our data do not directly record the type of license used by each driver, they do identify the medallion ID
separately from the driver ID. We categorize leased vs. owner-operator medallions based on the number of unique
drivers observed using each medallion and the probability that a medallion is turned over during the “witching
hour” between 4pm – 5pm. See Section A.1 for more detail.
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TABLE 1. Trip-level Summary Statistics

Variable Data Sample Obs. 10%ile Mean 90%ile S.D.

I. Trip Summary Statistics

Trip Revenue ($)

Overall 27.9M 5.60 12.35 21.50 9.23
Mon-Fri 18.6M 5.70 12.47 21.82 9.39
Sat-Sun 9.3M 5.50 12.11 20.90 8.90
AM Shift 17.5M 5.40 11.80 20.30 8.98
PM Shift 7.1M 6.40 13.39 23.29 9.33
Fleet 14.9M 5.52 12.06 20.78 8.75
Non-Fleet 13.0M 5.70 12.69 22.68 9.74

Trip Minutes

Overall 27.8M 4.00 12.15 22.70 8.61
Mon-Fri 18.6M 4.00 12.50 23.00 8.64
Sat-Sun 9.3M 4.00 11.45 21.17 7.89
AM Shift 17.5M 4.00 11.96 22.23 8.47
PM Shift 7.1M 4.52 12.56 23.00 8.36
Fleet 14.9M 4.00 11.90 22.00 8.20
Non-Fleet 13.0M 4.00 12.45 23.00 8.76

II. Shift Summary Statistics

Shift Revenue ($)

Overall 1,287K 150.26 267.25 378.59 89.94
Mon-Fri 880K 153.32 262.18 358.20 81.90
Sat-Sun 406K 144.77 278.27 419.33 104.46
AM Shift 766K 174.97 270.10 359.52 77.07
PM Shift 331K 166.57 285.60 410.00 92.59
Fleet 647K 168.06 277.24 380.76 85.33
Non-Fleet 640K 138.35 257.21 375.64 93.28

Shift Minutes

Overall 1,287K 287.92 497.91 659.58 149.60
Mon-Fri 880K 304.12 497.69 641.27 140.11
Sat-Sun 406K 262.85 498.37 689.87 168.35
AM Shift 766K 380.07 525.71 649.57 125.30
PM Shift 331K 303.24 485.97 662.10 139.74
Fleet 647K 331.28 516.79 658.79 137.13
Non-Fleet 640K 260.59 478.81 661.03 158.97

This table uses TLC Data from August–September, 2012. Panel I summarizes revenues and total trip
times over all trips in the sample, with subsampling on different types of shifts as indicated. Panel II
summarizes total cumulative revenues and cumulative work time across each driver-shift. Shift minutes
includes both the time spent vacant and the time spent occupied.

shifts with about 7% less time. Though owner-operators have essentially free entry across shifts,

the fact that their shifts are similarly distributed as lease drivers suggests that evening work
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may impose higher opportunity cost on drivers despite being more valuable overall. A similar

albeit weaker pattern is true for weekend shifts compared to weekdays.

Drivers are highly variable in their daily working hours. The 10th to 90th percentiles among

various driver types falls between about 4.5–11 hours. A simple variance decomposition reveals

that about 34% of the total variation in driver hours is attributable to differences between drivers.

In contrast, the within-driver variance accounts for about 66% of the total variation, suggesting

a large degree of idiosyncratic variation in quitting behavior among drivers. In the next section

we provide a histogram of driver quit times and compare this distribution against patterns of

earnings.

2.1. Earnings Rates Across the Day. In this section we highlight patterns in how drivers accrue

earnings over time. While trip prices are determined by the TLC’s fare schedule, drivers face

uncertainty over hourly earnings because they need to first search for passengers in order to

earn fare revenue. The amount of search time required to find a passenger is highly uncertain,

generating variability in the realized productivity of a driver’s time. To capture this in a simple

way, we define a spell as the length of time between passenger drop-offs. A spell is therefore the

sum of time spent searching for a passenger and the time spent traveling with a passenger, and

every shift can be characterized as a sequence of spells from the time the driver begins working

until the end of the day. We now define a driver’s spell wage as the total revenue earned over a

spell divided by length of the spell. The driver’s spell wage is thus a trip-by-trip effective wage.

We also define a running wage as the total earnings divided by total hours worked at any given

point in time. Note that at the end of a driver’s shift, the weighted average spell wage is equal to

the average realized wage over a given driver’s shift, a common moment used in the literature.

We express spell wage and running wage in units of dollars per hour.

We document two key stylized facts about drivers’ earnings. First, spell wages and running

wages tend to decline with time spent on a shift. Figure 1 shows how spell wages and running

wages evolve with time spent on the shift. Both wage series depict hourly means residualized

over location fixed effects and month by day-of-week by hour fixed effects.7 To see where in

the day drivers tend to quit relative to their wage dynamics, both panels depict a histogram

7Our empirical strategy will pool these effects across drivers similarly to this figure. However, in Figure 4 we
show that these effects persist net of driver-level fixed effects as well.
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indicating the share of quitting relative to hours worked. The change in running wages across a

shift implies that drivers earn, on average, around $2 less per hour relative to other drivers from

the start to the end of a typical eight- to nine-hour shift. Importantly, these effects are residual

to the traditional hourly and weekly shifters of earnings as well as location. Thus, even two

drivers who begin work at different hours on the same day will, at any point in the day and at

the same location of the city, have different expected earnings rates.

FIGURE 1. Rate of Earnings by Cumulative Hours Worked
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TLC from January to August 2012. This figure shows how earnings evolve with cumulative hours
worked. Panel (a) shows the relation between spell wage (residual to location and time fixed effects)
and cumulative hours worked. Panel (b) shows the relation between the residualized running wage and
cumulative hours worked. Both panels depict the share of hours in which drivers quit, with units on the
right y-axis.

A natural follow up question is to ask why driver earnings are falling as they work more hours.

Panel (c) shows that, while trip revenues are modestly increasing with hours worked, indicating

a small average increase in longer and higher-fare trips, the predominant reason for declining

earnings rates is that time spent between trips grows as drivers work longer hours. To explain

the puzzles in the labor supply literature, we can largely remain agnostic in understanding why

search times are increasing. However, it is instructive to decompose why this pattern occurs.

Drivers’ increasing search times could arise from increases in active working time or increases

in break time. Active working time may grow if drivers become less efficient at searching for

passengers, perhaps through less intensive or less productive search. Alternatively, drivers may

take more or longer breaks between trips, for example to eat a meal or rest. Either explanation
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might qualify as an effect of workplace fatigue, which has been documented in myriad studies

of other workplace settings.8

The evidence points to increased break time being the predominant force driving these

patterns. If drivers became less efficient at search, we would expect that they would drive longer

distances on average to find passengers. In Figure 5 in the Appendix we show that the search

radius, defined as the straight line distance between a driver’s pickup position and subsequent

drop-off position, is flat in hours worked, until around the 9th hour, after which the radius

grows at a slow rate for each additional hour worked. This effect is small, however, as few

drivers work beyond 9 hours. The increase in radius by a driver’s 11th hour into the shift is

about 0.1 miles, or 1/2 the length of a standard New York City block. By 14 hours, the effect

is around one city block in length, yet less than 1% of drivers are observed to work this many

hours. Because drivers’ search distances are not materially changing, we believe drivers are

most likely taking breaks.9

2.2. Breaks and Bias in Static Wage Regressions. A more plausible explanation for the pattern

of declining earnings is that drivers take more frequent or longer breaks the longer they work.

The possibility of driver break periods has been discussed to some extent in the literature.

Though results are not reported directly Camerer et al. (1997) claims to recover similar results

when removing inter-trip break times beyond 30 minutes when computing labor hours. Farber

(2005) and Thakral and Tô (2021) similarly characterize breaks as waiting times in excess of

30 minutes for most trips and 60–120 minutes for trips outside of Manhattan. Each paper

finds that conditioning on such breaks do not alter the respective conclusions. Schmidt (2019)

approximates break time as the minimum between any waiting time 1.5 times greater than the

8Economists have long discussed the possibility that workplace productivity declines with hours worked
(Leveson, 1967; Barzel, 1973). Evidence for these effects are documented in both worker productivity (Pencavel, 2015)
and in the context of physician errors (Ricci et al., 2007; West et al., 2009).

9While explicitly modeling drivers’ intradaily break decisions could provide additional insights, we find that
break patterns do not vary systematically with intraday earnings (see Section A.3), suggesting breaks can be
reasonably treated as exogenous to the quitting decision. Moreover, since breaks are not directly observed in the TLC
data, any model of endogenous break-taking would require strong assumptions to infer break periods from waiting
times between trips.
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average search times and twenty minutes, and finds that breaks defined this way increase with

hours worked. 10

We next investigate how sensitive the definition of break taking is to the results in the literature.

We first consider a break as any waiting time over 30 minutes, consistent with the above papers.

Because lower percentiles of residual waiting times also increase with hours worked, we next

define a break as waiting time over 10 minutes. Removing these from work hours will further

control the effect of increased future waiting times (and therefore, future declining spell wages)

on hours worked. Finally, we regress waiting times on a rich set of time, location and driver

covariates to generate expected waiting times (averaging over all hours-worked variation). Using

these, we recompute work hours as time on trips plus expected waiting times, essentially

purging all residual factors that induce drivers to wait more or less.

With our measures of work hours net of break-taking, we use data from Jan. 1, 2012 – Sep. 3,

2012 to reproduce the Camerer et al. (1997) (henceforth CLBT) regression specification, using

identical instruments and controls. We left out post-fare hike data after September 4, 2012 to

only include variation from a constant-fare period as in CLBT. Next, we repeat the exercise with

the full 2012 data and reproduce Farber (2015) (henceforth F2015), with the F2015 instruments

and controls.

Following CLBT, we instrument for wages using the 25th, 50th and 75th percentiles of average

shift wages across all other drivers on a given day, with additional controls for shift type and

weekday. Our F2015 replication uses mean wages of other drivers as the instrument, with richer

controls including day-of-week and weekly indicators, more shift types, a pre/post fare increase

dummy, and driver fixed effects. Both regressions are conducted at the shift level. For both

specifications, the dependent variable is log hours worked on a shift and the key independent

variable is log average wage over a shift.

Table 2 show the results of this exercise. Baseline specifications are reproduced in columns

1 and 2. Our baseline CLBT-like estimate is -0.680 compared to CLBT’s published estimates

of -0.319 and -0.975 (across different samples). By removing 30 minute breaks, our estimate

shrinks in magnitude to -0.365. With 10 minute breaks removed, our estimate turns positive to

10The remainder of the literature mostly ignores breaks. Farber (2008), Farber (2015), and Crawford and Meng
(2011) do not discuss breaks or handle them in any distinct way.
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TABLE 2. Wage Regressions Replication with Excess Breaks Removed

Baseline Removing Breaks
(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES CLBT 1997 Farber 2015 CLBT wait<30 CLBT wait<10 CBLT mean wait Farber wait<30 Farber wait<10 Farber mean wait

log daily wage -0.680*** 0.516*** -0.365*** 0.047*** 0.416*** 0.970*** 1.507*** 1.872***
(0.014) (0.010) (0.016) (0.017) (0.017) (0.013) (0.015) (0.017)

Instrument + Controls CLBT F2015 CLBT CLBT CLBT F2015 F2015 F2015
Observations 786,808 786,808 786,808 786,808 786,808 786,808 786,808 786,808

This table shows wage regression estimates. The dependent variable is log(work hours). Specification (1) repli-
cates the final specification in Camerer et al. (1997) Table III including the same set of controls and a a 25% sam-
ple of data from Jan 1, 2012 – Sep 3, 2012. Specification (2) replicates Farber (2015) Table 5 including the same
(richer) set of controls and data from Jan 1, 2012 – Dec 31, 2012. The remaining columns repeat these replications
except with alternative definitions of work hours. In columns (3) and (6) we define work hours as all cumula-
tive work time minus all waiting times beyond 30 minutes. In columns (4) and (7) we instead subtract waiting
times beyond 10 minutes. In columns (5) and (8) we reconstruct total shift time using average waiting times by
hour of day, day of week, location and driver. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

0.047. Finally, by constructing total hours with expected wait times only, our estimate becomes

0.416. We repeat the analysis for F2015, obtaining a baseline estimate of 0.516. Although our

data is the same as with our CLBT analysis, we are now controlling for a richer set of covariates,

including day-of-week and weekly indicators, more shift types, a pre/post fare increase dummy,

and driver fixed effects. Our baseline closely compares to the published F2015 estimate of 0.589.

By removing breaks, again our estimate increases to 0.970 (removing 30 minute breaks), 1.507

(removing 10 minute breaks), and 1.872 (using average wait times). These results suggest that

our replication can closely match estimates in the literature, and that controlling for drivers

break times, which are increasing with hours worked, can flip the sign of the original behavioral

results.

Collectively, we interpret these results as evidence that drivers’ increased break-taking with

longer work hours is driving a decline in earnings and introducing a negative correlation

between average hourly earnings and hours worked. Importantly, this correlation introduces

a bias in the static wage regression framework. We refer to this bias as the technology bias,

referring to the technology of human workers and associated requirements of rest with long

hours. Without wage instruments, Camerer et al. (1997) highlight the problem of division bias,

where hours worked appears on both side of the OLS equation. The technology bias, however,

is a problem that even existing wage instruments cannot fully mitigate. This is because an

instrument that impacts the daily earnings distribution does not impact the relation between
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hours worked and break taking. As a result, even if, all else equal, drivers work longer in

response to a high-wage day compared to a low-wage day, the longer-hours drivers will also

face longer break times in expectation, leading to a downward bias in prevailing average wages.

The measured effect in the IV regression is a composition of (positive) labor supply elasticity

and a (negative) technology bias.

2.2.1. Is break-taking endogenous? In Section A.3 we provide evidence that drivers do not modu-

late effort in response to transient earnings shocks within a day, which suggests that the decrease

in the earnings rate to be exogenous with respect to cumulative earnings. These patterns reflect

a declining within-driver productivity: earnings continue to slow down even when market

conditions become more favorable for drivers. One important implication of this declining

productivity is that, all else equal, driver shifts with longer cumulative work hours will be

associated with lower average shift wages.

2.3. Negative Serial Correlation and Location Effects in Earnings. The second key fact about

driver earnings is that positive shocks to earnings (i.e. earnings exceeding that of a typical

weekday and time of day) exhibit a strong negative serial correlation. For example, a driver

who earns an extra $20 per hour compared with other drivers on a Monday 2pm will face, in

expectation, a rate of earnings well below average in the subsequent hour. This pattern arises

because many long and high-earning trips will leave taxi drivers in less desirable locations that

require additional search time to find the next passenger.

Below we display map of the TLC taxi zones and mean spell wages by zones, first, as

destinations (Panel I) and then, as origins (Panel II). Panel I shows that positive income shocks,

the darker shaded regions, are associated with drop-offs farther from Manhattan. This is because

most rides originate in Manhattan, and travel times to these destinations will be substantially

longer than inter-Manhattan trips, leading to a high degree of hourly occupancy among drivers

serving these destinations. However, Panel II shows that subsequent spell wages faced by

drivers in the positive-shock destinations are quite low. This is not surprising, as drivers are

generally unlikely to find passengers in these more distant locations and frequently travel back

to Manhattan without passengers, leading to very low next-spell earnings rates.
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FIGURE 2. Taxi Zones vs. Mean Spell Wage

I. Spell Wages (During Trip) II. Spell Wages (After Trip)

This figure uses TLC data from Jan. 1, 2012 to Sep 3, 2012. Panel I shows the average spell wage for

trips which lead to a drop-off in each of the 260 TLC-defined taxi zones. Panel II shows the average,

forward-looking spell wage for each taxi zone conditional on having dropped-off passengers in that zone.

These quantities represent the expected earnings per hour for any spell which ends (Panel I) and begins

(Panel II) in a given taxi zone. Taxi Zone shape files are obtained from https://www.nyc.gov/site/

tlc/about/tlc-trip-record-data.page.

Table 3 provides a more direct quantification of these effects. Across non-Manhattan desti-

nations, average earnings increase from $5 to $55 per hour (or 12% to 140%) over the baseline

of about $39.40 per hour. However, those same high-earnings destinations become almost

equivalently bad as places to subsequently search for passengers, with average declines in

hourly earnings of $7 to $25 (or -17% to -61%).

The negative auto-correlation shown here plays an important role in the dynamic model

because it helps explain why drivers often exhibit an increased likelihood of quitting after

positive earnings shocks near the end of their shift. To test whether location-based negative

serial correlation explains the apparent recency bias, we can replicate the baseline results in
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TABLE 3. Spell Wage Effects During and After Borough Trips, Relative to Manhattan

(1) (2) (3) (4) (5) (6) (7)

Bronx (trip destination) 14.14*** 13.72*** 14.69*** 16.74***
(0.0672) (0.0656) (0.0669) (0.0657)

Brooklyn (trip destination) 4.610*** 3.294*** 3.445*** 6.419***
(0.0222) (0.0222) (0.0221) (0.0222)

EWR Airport (trip destination) 53.28*** 54.43*** 54.95*** 54.73***
(0.126) (0.123) (0.121) (0.119)

Queens (trip destination) 10.92*** 11.15*** 11.63*** 13.61***
(0.0211) (0.0208) (0.0208) (0.0206)

Bronx (start search) -16.48*** -18.42*** -18.42*** -19.47***
(0.0696) (0.0693) (0.0693) (0.0678)

Brooklyn (start search) -6.649*** -8.668*** -8.668*** -10.31***
(0.0229) (0.0226) (0.0226) (0.0227)

EWR Airport (start search) -25.26*** -24.87*** -24.87*** -25.31***
(0.129) (0.124) (0.124) (0.121)

Queens (start search) -10.40*** -10.75*** -10.75*** -13.10***
(0.0219) (0.0215) (0.0215) (0.0213)

Constant 39.41*** 39.46*** 39.42*** 41.11*** 41.22*** 41.22*** 40.32***
(0.00474) (0.00464) (0.00459) (0.00475) (0.00459) (0.00459) (0.00463)

Obs. 15,422,836 15,422,836 15,419,838 15,420,001 15,419,999 15,419,999 15,406,011
Dow x Time FE NO YES YES NO YES YES YES
Driver FE NO NO YES NO NO YES YES
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

This table shows the impact of trips to different boroughs on spell wage relative to trips to/from
Manhattan. Columns (1)-(3) shows the effect on spell wage from taking a trip to the stated borough on
the current spell. Columns (3)-(6) shows the effect on spell wage from ending the previous trip in each
borough. Column (7) combines both sets of controls.

Thakral and Tô (2021) (hereafter, TT) while splitting our sample based on trip destinations. If

recency bias is driven by negative serial correlation in earnings after long trips to outer areas,

then the effect should be stronger when restricting to earnings from trips to low continuation

value neighborhoods (those with below-median future expected earnings) and weaker or absent

when restricting to high continuation value neighborhoods (those with above-median future

expected earnings). This provides a direct test of whether the apparent greater sensitivity to

recent earnings is actually capturing rational responses to temporarily high earnings that predict

lower future opportunities.

Table 4 shows our results. The coefficients represent the elasticity of the probability of stopping

with respect to earnings in each hour, where a positive coefficient indicates that higher earnings

in that hour increase the probability of stopping after hour 8. Columns (1) and (2) replicate

TT’s elasticity estimates in our sample. Column (3) makes a technical adjustment to the sample

window to address potential mechanical effects (see Section A.2.3 for details). Columns (4)-(5)
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TABLE 4. Elasticity of Stopping at 8.0-8.5 Hours with Respect to Income

(1) (2) (3) (4) (5)

Full Set Combined Adjusted High Cont’n Low Cont’n
Incomes Value Income Value Income

Cumulative Income -0.952***
(0.228)

Income in Hour 1 1.166*** 0.214 0.112 0.384*** -0.285**
(0.247) (0.247) (0.121) (0.146) (0.117)

Income in Hour 2 0.900*** -0.047 0.005 0.067 -0.261
(0.250) (0.250) (0.133) (0.187) (0.172)

Income in Hour 3 0.673** -0.279 0.015 -0.313 0.219
(0.291) (0.291) (0.155) (0.208) (0.198)

Income in Hour 4 0.917*** -0.035 -0.251 -0.102 0.129
(0.293) (0.293) (0.157) (0.216) (0.211)

Income in Hour 5 0.912*** -0.040 0.460*** 0.159 0.287
(0.292) (0.292) (0.157) (0.218) (0.219)

Income in Hour 6 1.497*** 0.545*** 0.253 0.092 0.390*
(0.291) (0.291) (0.156) (0.213) (0.222)

Income in Hour 7 2.009*** 1.057*** 1.135*** 0.640*** 0.122
(0.287) (0.287) (0.157) (0.217) (0.241)

Income in Hour 8 2.015*** 1.063*** 0.108 -1.619*** 4.480***
(0.323) (0.323) (0.167) (0.259) (0.403)

Observations 234,349 234,349 261,389 129,153 129,153
R-squared 0.339 0.339 0.320 0.367 0.369

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of cumulative income in each hour of the day on the probability of stopping after the
eighth hour of cumulative work time. All estimates are presented as elasticities relative to the baseline probability of
stopping. The sample consists of a 25% sample of New York TLC data from 1/1/2012-9/3/2012, further limited
to trips ending at 8h0m to 8h40m. All specifications include controls for driver, day-of-week x hour, week-of-year,
drop-off neighborhood, cumulative income and cumulative work time. Columns (1) and (2) replicate Table 2 of
Thakral and Tô (2021) in our sample. Column (3) adjusts the sample window to 8h0m to 8h10m. Column (4)-(5)
repeat the specification of column (3) separately for earnings coming only from high- or low-continuation value
neighborhoods based on the top and bottom 50% of New York neighborhoods with respect to one-period-ahead
spell-wages conditional on drop-off in each neighborhood. Neighborhoods are defined as each of the 260 Taxi Zones
defined by the NY TLC here: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

repeat this specification separately for earnings coming from high and low continuation value

neighborhoods.

The results strongly support our hypothesis that recency bias reflects rational responses

to location-based earnings dynamics rather than behavioral effects. For high continuation

value locations (column 4), most hourly coefficients are small and insignificant, with a negative

coefficient in hour 8. In contrast, for low continuation value locations (column 5), we see a
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large positive coefficient (4.480) in hour 8, indicating drivers are much more likely to quit after

high-earning trips to areas with poor future earnings prospects. These results provide strong

evidence for our claim that earnings shocks induce higher quitting probabilities late in the day

because the associated destinations offer limited earnings opportunities. In Appendix Table 10

we show these results are robust to alternatively defining high/low continuation value areas

using a simpler Manhattan/Brooklyn versus outer borough split.

2.4. Motivating a dynamic model. Below we present a dynamic optimal stopping model to

reconcile the disparate results and puzzles in one simple framework. We believe the model

makes two contributions. First, from a negative perspective we show that it can explain key

behavioral puzzles in the literature, which posit negative wage elasticities. Concretely, we

demonstrate that a simple “neoclassical” model of dynamic optimization will generate the static

behavioral results given the earnings patterns that we document in the descriptive analysis.

Second, from a positive perspective, we show how to use this model to estimate the intensive-

margin labor supply elasticity, which is the key object of interest in this literature. While our

analysis of the early literature illuminates the key econometric problems with the static analyses,

our approach using the dynamic model allows for systematically controlling for drivers’ forward-

looking expectations in a way that reduced-form specifications with additional controls cannot

fully achieve. Rather than adding various proxy controls for future earnings opportunities in

an ad hoc way, the model provides a coherent framework that fully accounts for how drivers

incorporate the stochastic evolution of wages into their decisions. This comprehensive treatment

of dynamics enables us to disentangle the technology of earnings (i.e., declining productivity)

from preferences in order to obtain the elasticity of interest as a counterfactual. Our approach is

straightforward and may closely apply to studying other flexible labor supply settings such as

other gig-economy jobs like food delivery or owner-operated trucking.

3. MODEL

Taxi drivers drive around the city searching for customers. They earn fare revenue by

providing rides and work until deciding to quit for the day. We model the quitting decisions of

individual drivers, indexed by i, engaged in daily shifts indexed by j.
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We group drivers and shifts into a set of discrete types k(i, j) which characterize the combina-

tions of all possible driver types and shift types. For example, a driver type could be whether the

driver owns or leases a taxi. A shift type could be whether the shift takes place during a weekday

morning or weekend evening. Market conditions on a given shift are described by xj , a discrete

index of daily earnings quintiles that captures profitability for specific shifts. xj summarizes

market-wide variation in expected average earnings-per-hour, arising from demand factors like

weather conditions and events. This variation provides a natural source of exogenous shifts

in drivers’ expected earnings, analogous to the wage instruments used in the reduced-form

analysis of Section 2.

Drivers earn a payoff from cumulative earnings and cumulative time spent working, denoted

as uk(r, h). In the empirical analysis below, we make the assumption that money is fungible

throughout the day and further normalize the scale of utility to the dollar, so that ∂u
∂r = 1 for all

r and h. The function uk(r, h) is the main primitive object of interest, as it describes how drivers

value their time at various levels of work time.

We assume the mean utility of drivers has the following structure, with r equal to cumulative

earnings and h equal to cumulative number of hours worked:

uk(r, h) = r + θ1kh+ θ2kh
2 (1)

where θc
k = {θ1k, θ2k} is a vector of unknown cost function parameters to be estimated.11

Each decision period is discrete and occurs when a passenger is dropped off. After a trip

is completed, the driver observes the current state {r, h, ℓ} and faces a decision. He may quit

for the day, in which all fares and costs earned up to that point are collected and all possible

future fares for that day are foregone. Alternatively, the driver may choose to keep working for

one more spell, in which case he draws from a distribution of new fares dr, new work times dh

(consisting of both search time and then time-on-trip) and new locations ℓ′, such that

(dr, dh, ℓ′) ∼ Fk,x(r, h, ℓ). (2)

11In practice, we will treat drivers as homogenous within eight discrete types: AM/PM shifts × Weekday/Weekend
shifts × owner-operator/fleet licenses.
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Every new spell drawn adds to the stock of cumulative earnings, i.e. r′ = r+ dr and similarly

for work time h′ = h+dh. In other words, the additional payoff associated with a new spell is the

difference between payoffs at the new state from the previous one: uk(r + dr, h+ dh)− uk(r, h).

At the end of this trip, the driver once again faces the decision to quit or not.

F plays a critical role in the model. Fixing a shift-type k and market conditions index x, draws

from this distribution capture the transition path of the state variable, and, by extension, the

path of spell wages, as determined each period as dr
dh . The descriptive patterns documented in

Section 2.1 are directly encoded in F through its dependency on current state variables r, h and

ℓ. Moreover, F represents the equilibrium earnings process for the entire shift, summarizing the

search process and the efficiency of driver search as a consequence of the thin/thick externalities

on both sides of the market. Our counterfactuals of interest operate on F in a natural and

straightforward way, which allows us to circumvent the need to model the underlying search

and matching process and avoid the need to take a stance on its form.12

Before making a decision, drivers draw an unobserved opportunity cost ϵkty associated with

each driver-shift k, period t, and each quit decision, y ∈ {0, 1}. We assume each ϵkty is i.i.d and

distributed as Type I Extreme Value with mean zero and scale parameter σk.

Driver i’s decision problem in period t can then be characterized by a value of quitting or

continuing depending on the state {rt, ht, ℓt}, market conditions x, and a draw of ϵ = {ϵkt0, ϵkt1}.

Omitting the subscript t on state variables for simplicity, we can write the value function of each

driver-shift type k as follows:

Vkt(r, h, ℓ, ϵ) = max
{
uk(r, h) + ϵk0,

∫
Fk,x(dr,dh,ℓ′|r,h,ℓ),G(ϵ′)

Vk,t+1(r + dr, h+ dh, ℓ′, ϵ′) + ϵk1

}
(3)

Equation 3 summarizes the timing of the decision problem: after dropping a passenger, drivers

observe their private signal ϵ about the relative value of continuing work over quitting. If

they decide to continue, they then draw an updated work time and income. We therefore

assume they either quit or commit to working until finding another passenger and revisiting

12Our approach relates to Huang and Smith (2014), which models the non-stationary evolution of fishery stocks,
in part a function of a complex biological process, through a flexible specification of transition densities.
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the decision after that passenger is dropped off.13 Since the entire shift occurs within a single

day, we assume there is no discounting. However, the draws dh do impact model timing. First,

the wage process F depends on h, so a long spell dh impacts future draws. Second, the driver’s

cumulative work time also increments by dh, which increases total costs according to the shape

of uk(·, ·). Motivated by data, we make the assumption that drivers always quit by 15 hours, so

that Vkt(r, h = 15, ℓ, ϵ) = uk(r, h = 15) + ϵk0.

Existence and Uniqueness of the Optimal Stopping Rule.

Theorem 1. Denote rt ≡ (r1, · · · , rt) and ht ≡ (h1, · · · , ht), and ℓt ≡ (ℓ1, · · · , ℓt). Assume:

(i) For each t, ϵt is independent of (rt,ht, ℓt), i.e., ϵt⊥(rt,ht, ℓt); Conditional on (rt,ht, ℓt), the

errors ϵs are i.i.d. across 1 ≤ s ≤ t; and ϵty are i.i.d. across y = 0, 1, with a distribution that is

absolutely continuous with respect to the Lebesgue measure on R and have a mean of zero.

(ii) The support of (rt, ht, ℓt) and
⋃∞

t=1 Supp(rt, ht, ℓt) are compact.

(iii) The mean per-period utility function u(r, h) is continuously differentiable in (r, h).

Given these assumptions, a unique solution exists to the optimal stopping rule.

We provide a proof of the above Theorem in Section A.8.14 Note that Assumptions (ii) and (iii)

are not essential. They can be relaxed, though doing so would lengthen the proof and increase

the notational complexity of the analysis.

Entry. We abstract from modeling daily entry costs and instead assume drivers’ entry timing

decisions are fixed. While this is in part supported by regulatory constraints, as daily lease

drivers are bound to morning and evening shift timing windows, owner-operators are generally

free to begin work at any hour. Because drivers’ actual starting time decisions and constraints

are not observable, identifying entry costs would require a model of strategic interaction in

daily entry timing. We nevertheless believe the most natural way to estimate the substitution

elasticity of labor supply, as we do in Section 6.2, is to fix starting times and predict work hours

13This assumption is motivated by limitations of the TLC dataset; we cannot observe drivers engaged in search
who give up half-way through and quit their shift. Therefore we assume drivers’ decision to quit occurs at the point
of passenger drop-off.

14Note that Assumptions (ii) and (iii) are not essential. They can be relaxed, though doing so would lengthen
the proof and increase the notational complexity of the analysis. Additionally, it should be noted that our model
assumes that the per-period utility is additive in ϵt, which can also be relaxed.
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as a function of changes to earnings. This approach offers a direct comparability between our

estimates and those obtained in other labor markets. We also want to emphasize that even a

simple dynamic model is capable of reconciling multiple puzzles that arise in the labor supply

literature. Nevertheless, this assumption limits the types of counterfactuals one can consider

using our framework.

Competition. Drivers compete for fares with other drivers. This interaction is encoded in the

distribution F of work time, earnings and location draws. All else equal, more drivers in the

market tends to shift the mass of this distribution towards longer realizations of h for a given r,

as a thicker supply-side leads to increased driver search times.

Modeling the underlying mechanisms that give rise to the equilibrium embedded in F poses

unique challenges, as it requires a model that maps strategic entry decisions to hourly earnings

(Frechette et al., 2019) and a model that maps drivers’ endogenous location search to location-

specific earnings (Buchholz, 2022). Each of these challenges, as addressed by the literature,

entails a number of substantial assumptions for computational tractability.

For our questions of interest, we can circumvent many of these difficulties. In estimation, we

leverage the fact that individual drivers are small relative to the market, and treat F as a data

object, and holding it fixed conditional on a broad set of observables. In our counterfactuals, we

operate directly on F in different ways. We further argue that, conditional on an equilibrium of

interest, in both estimation and computing counterfactuals, F can be regarded as common and

exogenous across drivers. This approach enables us to conduct our analysis through the lens of

a single-agent problem.15

4. EMPIRICAL STRATEGY

In this section, we discuss the computation and estimation of the model presented in Section 3.

We first describe the forms of heterogeneity we account for. Then we describe how the descriptive

facts of declining earnings and location effects are incorporated into the model. Finally, we turn

to details on computing value functions and estimating model parameters.

15We discuss this assumption further in Section 2.1 and Section A.3.
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4.1. Driver Heterogeneity: To capture the sources of preference heterogeneity consistent with

the literature, we focus our analysis of heterogeneity on eight discrete driver-shift types, indexed

by k, according to whether a driver’s shift is classified as AM or PM and Weekday or Weekend,

and whether the driver is classified as Owner-operator or Fleet. Drivers within each group (e.g.,

AM-Weekday-Fleet) are assumed to have common cost function parameters and common scale

parameters on unobserved shocks. Denote the full vector of parameters for type k drivers as

θk = {θk1, θk2, σk} and denote the cost-function-specific parameters as θc
k = {θk1, θk2}.

4.2. Market-level Heterogeneity: Some days are more profitable for drivers than other days,

for example weekdays versus weekends, or simply days in which demand is very high or

very low. This variation has persistence within a particular shift and will therefore enter into

drivers’ earnings expectations, represented by Fk on any given day. We use this type of daily

market-level variation for two reasons. First, it allows us to finely construct driver expectations

with respect to market observables. Second, by using quintiles of average daily earnings, we

exploit the same type of exogenous earnings variation as the instrumental variables strategy

employed in Section 2, where wage instruments were constructed from percentiles of daily

earnings. This parallel identification strategy allows us to isolate changes in expectations that

are plausibly exogenous to any individual driver’s choices. We incorporate this heterogeneity

into our model along two dimensions of k: AM/PM shifts, Weekday/Weekend shifts, and we

further separate shifts into five types of days, denoted as xj or the daily earnings quintile x

associated with shift j of type k(·, j). We compute xj by first computing the average spell wage

of all drivers across each driver-shift type k and categorizing these into five quintiles, which

represent how productive driving is on average. The three above shift characteristics combine

to create 2× 2× 5 types that make up market-level heterogeneity entering the model as Fk .

4.3. Serial Correlation in Earnings: Our model accounts for the two forms of within-driver-shift

serial correlation discussed in Section 2.1. We describe each of these in turn.

(i) Declining spell wages, or the phenomenon in which drivers tend to become less productive

as their shift grows longer, are patterns that enter our model through the state transition

probability matrix. State transitions determine the relative probabilities of advancing in

cumulative earnings and cumulative time conditional on a location ℓ and daily shift-type
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xj . Transition probabilities incorporate declining spell wages documented in Section 2.1

because, as the cumulative time state grows, a driver’s probability of reaching higher

earnings states declines relative to his probability of reaching higher time states.

(ii) Location effects, or the chance that future spell wages fall following trips to outer bor-

oughs, also enter drivers’ expectations and impact their quitting decisions. Due to

dimensionality concerns with adding more locations we treat the space of locations

coarsely, dividing ℓ into six categories as detailed in Section 4.4.1. Each time drivers

in location ℓ draw a new location ℓ′ they earn fare, cumulate work time, and then face

a new decision at location ℓ′. Drivers’ labor supply choices depend on their location

through the expectations of future earnings, which depends on their current location.

4.4. Estimation. Model estimation is split into two separate parts: estimating the transition

process Fkx and estimating payoff parameters θk for each driver-shift type k. Below we describe

each part of the estimation.

4.4.1. Estimating the transition process. Fkx describes the probability distribution over new state

variables (hours, earnings and locations) as a function of current state variables on a shift of

type k. Our large sample size enables us to estimate Fkx non-parametrically for most trip

types by finely discretizing the state (r, h, ℓ) and computing empirical transition probabilities

between cells from spell to spell. Specifically, we create twenty uniformly divided bins between

the lowest and highest observed values of earnings and time worked within a shift. This

leads to cumulative earnings (r) bins from $2.50 to $753.33 in twenty intervals of about $36

and cumulative time (h) bins from 0 minutes to 1,008 minutes in twenty intervals of about 47

minutes.

We first divide ℓ into six categories: Manhattan, Brooklyn, Bronx, Queens, Staten Island, and

Newark Airport.16 However, three of these regions, Staten Island, Newark Airport and Bronx

are geographically isolated and represent less than 1% of pickups or drop-offs. As a result, we

do not have sufficient data to estimate Fkx for these regions and therefore drop shifts with such

trips from our estimation sample. We estimate non-parametric transition probabilities between

16Note that both New York City Airports, LaGuardia and JFK, are contained within Queens.
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(r, h, ℓ) across Manhattan, Brooklyn and Queens. Together these three grids (20 x 20 x 3) form a

state space of 1,200 discrete bins over which drivers face value functions and policy functions.

4.4.2. Solving value functions. We use a nested fixed-point procedure in which, for each guess of

the parameter vector, we first solve value functions in Equation 3. All drivers quit by the 15th

hour and receive a payoff equal to their current state according to Equation 7. Our data cleaning

procedure throws out shifts beyond this length, because they are likely due to computer error

or electronic testing (see Section A.1). We compute value functions in each state by backwards

induction, beginning at the terminal time state, updating values over the discretized grid of

remaining state variables, and then incrementing backwards through each time period. Because

values for each location state are calculated sequentially, there is some residual inconsistency

in value functions after a single round of backward induction. Therefore, we iterate on this

calculation until finding a fixed point.

4.4.3. Estimating payoff functions. Our model parameters reflect the tradeoff between earnings

and time as revealed by drivers’ quitting decisions conditional on observed states. To estimate

the model parameters governing this tradeoff we specify a likelihood function. The function

represents the likelihood that drivers are observed to react as they do to a sequence of state

variables as they are observed in the data. In other words, a driver who is observed to quit

(yit = 1) at time t has, by definition, chosen to not quit (yit = 0) for all states (ri,s, hi,s, ℓi,s)

where s < t. Given all unique driver-shifts ι ∈ I with driver-shift-type k and a trip index t, the

log-likelihood function is as follows:

LL(θk) =
∑
ι∈I

{yιt · [lnP (yιt = 1|rιt, hιt, ℓιt, xj ;θk)

+

t−1∑
s=1

(1− yιs) lnP (yιs = 0|rιs, hιs, ℓιs, xj ;θk)

]} (4)
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The quitting probability P (yιt = 1|rιt, hιt, ℓιt, xι;θk) is obtained via the equilibrium value

functions (Equation 3), which we solve by applying a backwards induction solution conditional

on our estimate of Fkx and conditional on each candidate parameter vector θk.17

P (yιt = 1|rιt, hιt, ℓιt, xi;θk) =
exp(u(rιt, hιt|θc

k)/σk)

exp(u(rιt, hιt|θc
k)/σk)) + exp(Vk(rιt, , hιt, ℓ, xj |θc

k)/σk)
(5)

Our estimator maximizes Equation 4 separately for each k, representing eight observable

driver-shift types.18

5. RESULTS

In this section we present and discuss the empirical results of the dynamic labor supply model

presented in Section 3. Estimates of the driver cost parameters are reported in Table 5, Panel I.

We produce estimates on eight samples, dividing drivers into owner-operator or fleet and their

shifts into day or evening and weekday or weekend. As discussed in Section 2, these are natural

divisions across which opportunity costs should differ. Because we normalize the scale of

utility to dollars, we can also interpret cost functions in dollar terms. The raw parameter values

show that time costs are decreasing and convex, with steeper costs on weekends compared to

weekdays and evening shifts compared to day shifts.

In Table 5, Panel II, we use the mean cost parameters θ1k and θ2k to compute drivers’ marginal

cost of time at the typical hour of quitting. This value is computed as the mean of the derivative

in total time cost with respect to hours worked (i.e., mck(h) = θ1k + 2θ2kh) where h is the final

hour of each driver’s shift. For example, the first column shows that owner-operators during

daytime weekday shifts have a cost of time at the average hour of quitting of $40.73 per hour.

We contrast with Panel III, which shows the average shift earnings in that hour to be $36.94. The

17Note that the full likelihood function normally also includes the contribution of the evolving state variables. But
due to the conditional independence assumption, we can separate the likelihood function into two additive terms,
one involving state transitions and one involving choices. Since we assume drivers are small in this market, they do
not impact state transitions so that additive part drops out of the likelihood function.

18In practice, we impose a small penalty term on high values of σk.This is because the solver otherwise overweights
matching the many “continue” choices, or P (yι,s = 0) compared with the relatively few“quit” choices, or P (yι,s = 1),
and converges to degenerate distributions of θ and very high σϵ to explain quitting. We find that by penalizing σk

we require the estimator to match the quitting probabilities instead using the cost curves. This method provides cost
curves that fit the data well. We offer more details in Section A.5.1
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TABLE 5. Model Estimates

Driver-Type: Owner-Operated Fleet Owner-Operated Fleet

Shift-Type: AM AM PM PM
Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun

I. Estimates

σϵ
14.65 13.78 13.43 17.42 17.04 12.54 19.14 17.94
(5.35) (4.96) (5.11) (6.42) (5.59) (5.12) (7.08) (6.69)

θ1
208.70 136.91 240.04 210.15 155.75 128.38 185.25 175.05
(7.34) (4.76) (8.62) (7.43) (5.47) (4.89) (7.30) (6.44)

θ2
-7.93 -4.11 -9.44 -6.54 -4.66 -4.01 -5.57 -4.81
(0.27) (0.14) (0.33) (0.23) (0.18) (0.15) (0.23) (0.18)

II. Implied by Estimates

Last Hour Time Cost ($/hr.) 40.73 54.02 40.59 59.46 52.30 43.51 50.38 40.59
(18.81) (16.16) (17.39) (19.20) (17.35) (14.62) (20.10) (17.19)

III. Data Comparison
Last Hour Earning ($/hr.) 36.94 39.68 37.57 40.07 38.55 40.89 37.80 41.26
Avg. Shift Minutes 472 399 509 456 577 568 550 567
Avg. Trips Per Hour 3.8 3.9 3.8 3.8 3.7 4.0 3.6 3.9

This table shows model estimates by shift, owner-status and weekday/weekend. Panel I shows parameter
estimates as well as standard errors. Panel II shows the average marginal time cost of drivers at the
time of quitting. This cost is computed as the mean (across drivers in each group) of model estimates
of drivers’ time costs at the time that driver quits. Panel III displays average cumulative earnings and
work time for driver shifts within each group. Standard errors are obtained by resampling entire driver
shifts, with replacement, and re-estimating state transitions, parameter estimates (panel I) and associated
moments (panel II) within each driver- and shift-type. We conduct the estimation across 200 samples for
each group and report standard deviations in parentheses.

discrepancy between the two rows is due to the role of unobservables. The bottom row of Panel

III shows the expected number of trips per hour across shifts (computed as the average of the

inverse spell length, in hours, across trips of each shift type). This value informs us how many

draws of ϵkty are obtained by drivers in each hour. Thus, the model predicts that driver facing

systematic hourly costs of $40.73 are likely to quit in an hour when average earnings are $36.94,

because total costs are likely to surpass these earnings. Moreover, since time costs are rising

rapidly by 7–8 hours due to the quadratic term, these estimates appear to broadly rationalize

drivers’ quitting behavior around the observed times. Finally, Table 5 Panel III also displays

average shift durations by group. Average shift durations across groups are between 7h 40m

and 9h 40m.
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FIGURE 3. NYC Taxi Driver Marginal Cost of Time Estimates
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This figure shows estimates of drivers’ marginal cost of time by day/evening and weekday/weekend
shifts.

While the empirical specifications in Table 5 are simple – payoff functions have only three

parameters – the behavioral implications of the dynamic model are quite rich. In Figure 3 we

present drivers’ marginal cost of time, or δu(r, h)/δh. These marginal cost functions are linear

as u(·, ·) is quadratic in cumulative time-worked. An immediate implication of the positive

slopes is that individual driver labor supply elasticities are positive. As earnings grow, all

else equal, a driver’s optimal amount of cumulative work time will increase on average. Day

shift preferences are more alike than evening shift preferences; the higher marginal costs in the

day shifts are almost uniformly higher. The largest slope, among AM-fleet drivers, appears to

demonstrate the influence of the 5pm shift change period, in which fleet drivers have to return

to bases to hand over leased medallion vehicles. Day shift cost differences may also reflect a

preference for traditional work hours. We also see that marginal costs are slightly less steep

on weekend shifts compared with weekday shifts, implying lower driver opportunity costs on

weekends.

Nevertheless, a point of emphasis here is that once taxi drivers’ quitting decision are modeled

in a dynamic optimal stopping framework, the existing static wage or hazard models are hard

to interpret as they largely require drivers to react to past outcomes instead of forward-looking

tradeoffs. However, in the dynamic context we can also see why past outcomes may matter
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in more subtle ways: drivers react to past earnings shocks (i.e., observed “high” draws from

Fk) because there is autocorrelation in these shocks, at times positive and other times negative.

Drivers react to cumulative time because it moves them up their cost curves as illustrated in

Figure 3. Both types of serial correlation lead static models to identify real effects of variation in

contemporaneous time and income, but absent the dynamic model the interpretation of these

effects is difficult.

5.1. Generating the Behavioral Results. In this section we show that data generated from our

estimated model produces driver behavior that appears as non-standard or “behavioral” when

analyzed in a static model. Our first step is to use our model to simulate data that takes the

same form as our actual data set. To do this we simulate a large set of driver shifts conditional

on driver types (owner-operator or fleet drivers), shift-types (morning or evening shift periods),

and day-types (one of five levels of average daily earnings), where drivers begin at an initial

state and take draws from the joint distribution of earnings and time when they choose to

keep working. We design this exercise to generate a new data set such that driver-, shift-, and

day-types are represented in proportions identical to those found in the original data set. We

then conduct a series of regressions analogous to those used in the literature and show that the

results indicate apparent downward-sloping labor supply curves. In Section A.7 we provide a

detailed description of the simulation exercise.

In Table 6 we report estimated wage regressions next to analogous regressions from the

original data set. Both data and estimates underlying the simulation come from a two-month

period of July 1, 2012 to August 31, 2012. The first two columns display instrumented wage

regressions comparable to those in Camerer et al. (1997).19 We report results using two separate

instruments representing the distribution of wages among drivers on a given day. IV 1 denotes

the Camerer et al. (1997) wage instrument, or the 25th, 50th and 75th percentiles of the average

shift wages of other drivers on the same day. IV 2 denotes an alternative instrument as used

in Farber (2015) equal to the average of the daily shift wage rates across all drivers. Under

all specifications we find significant negative coefficients on log wage, indicating that shifts

in which drivers who earn higher wages are correlated with shifts in which drivers work less

19The exception is that our estimates are not conditioned on weather and temperature variables so we omit these
covariates across the table.
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TABLE 6. Simulated Wage Regressions Comparison

(1) (2) (3) (4)
Simulated (IV 1) Simulated (IV 2) Data (IV 1) Data (IV 2)

Log Wage -0.602** -0.602** -0.190** -0.158**
(0.049) (0.049) (0.017) (0.018)

Weekday 0.026** 0.027** 0.047** 0.046**
(0.003) (0.003) (0.003) (0.003)

PM Shift 0.110** 0.112** 0.013** 0.011**
(0.004) (0.003) (0.003) (0.003)

Owner Operator 0.090** 0.090* -0.055** -0.056**
(0.002) (0.003) (0.002) (0.002)

N 69,258 69,258 382,241 382,241

TLC Data from July-August, 2012. Panels (1)-(2) use simulated driver shift data. Data record the final
cumulative hours and average wage earned as of the last trip of each simulated driver-shift. IV 1
denotes wage instruments are the 25th, 50th and 75th percentile across all driver wages in each day type,
weekday/weekend and am/pm shift. IV 2 denotes wage instruments is the mean of average hourly
driver wages across all drivers in each day type, weekday/weekend and am/pm shift. Panels (3)-(4) use
TLC data and report the same regressions, where IV 1 denotes the wage instruments are the quartiles of
hourly driver wage each day and IV 2 denotes wage instruments that are the average hourly driver wages
across all drivers. Standard Errors clustered at the driver-shift level. Asterisks (**) indicate significance at
or above the 1% level.

time.20 Columns (3)-(4) replicate identical specifications by directly using the data. While we

replicated the specifications of Camerer et al. (1997) in Table 2, here we demonstrate that the

negative coefficients still obtain when we compare them to our simulated regressions. While

our model inherently abstracts from the richness of the decisions taken by actual drivers on the

street, our elasticity estimates are slightly more negative than those produced using the actual

data. This suggests that, despite its simplicity, our model fully captures the “behavioral” aspects

of driver behavior as documented in the prior literature.

Despite the apparent negative wage elasticities, we know that our model is, by construction,

fully consistent with standard or neoclassical preferences for earnings at all states. To see why

we obtain negative coefficients on wage in hours worked, and positive coefficients on earnings

in the probability of quitting, we turn back to Section 2.1. There we document how spell wages

of a given driver tend to decline relative to other drivers the longer his shift grows. Thus, by

20In columns (1)-(2), which use data simulated from our estimated model, a “day” is simply the combination of
day types d and weekday or weekend. In columns (3)-(4), which use actual data, a day is defined as the calendar day
in which the shift began. Within a day, average shift wages are separated between am and pm shift workers.
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evaluating the average wage and the total time worked, we find that longer shifts are associated

with a lower average earnings-per-hour compared to drivers who worked shorter shifts as a

result of the pattern of declining spell wages.

This pattern holds despite an instrument for wages that generates exogenous variation in

the average earnings per hour. This result indicates that a selection bias is present: drivers

who work for longer hours are more likely to be drivers with lower average wages, given the

negative correlation between hours and average wage. In the IV regressions, this effect appears

to dominate the standard effect in which longer hours are worked due to higher earnings. We

show in Section 6.2 that the dynamic model can be used to disentangle these two channels in

order to estimate the actual impact of a persistent increase in earnings on total work hours.

Next, we turn to the case of time-inconsistent preferences highlighted in Thakral and Tô

(2021). This result again suggests a non-standard, downward-sloping labor supply curve in

certain periods of time close to the end of the work day.

By incorporating negative serial correlation into the dynamic model, our simulations also

produce data that align with the time-inconsistent preferences. To show this, we estimate the

following equation:

Pr(yint = 1) =
∑
ℓ

βℓ(hint)r
ℓ
int +Xintγ + ϵint (6)

Here y is the binary decision for driver i to quit or not on specific shift n at time t. As in

Thakral and Tô (2021) we allow drivers’ decisions to depend on cumulative earnings r which

are earned in hour ℓ of the shift. X includes controls for hour and shift.21

We collect only the observations where drivers have a pickup or drop-off in the middle 20

minutes of the eighth cumulative hour (i.e., drivers that are observed between 8:20-8:40 minutes

into their shift), and we control for income earned in the previous hours starting at the fourth

cumulative hour, not including the final hour.22

21Note we do not include the full set of weather controls and driver fixed effects because these are not estimated
separately in our model. However, these controls are not pivotal to the outcomes documented in Thakral and Tô
(2021).

22By limiting the length of the window we mitigate concerns about selection within the window, where higher
earnings mechanically correlate with higher hours. A similar approach appears in Thakral and Tô (2021).
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In Table 7, we use this sample to replicate the analysis and specifications of Table 4 in

Section 2.3, instead using our simulated data. While our sample is derived from a model, which

is inherently coarser compared to actual data, we nevertheless reproduce statistically significant

positive coefficients in the seventh hour, a result that is robust to the different specifications.

As discussed in Section 2.3, we only anticipate late-in-shift effects in this instance because this

when the continuation value differences between locations are more likely to induce differential

quitting decisions. We also note that Table 4 also finds strongest effects in the seventh hour.

Although our simulated sample is much smaller and, by construction, less rich than the TLC

data itself, these results suggest we can replicate patterns consistent with adaptive reference

dependence or late-in-day income targeting without any explicit modeling of these phenomena,

solely through incorporating forward looking decisions into an otherwise simple preference

specification.23

6. ANALYSIS OF LABOR SUPPLY ELASTICITY AND THE EFFECT OF RISING FARES

In this section we examine intertemporal labor supply elasticity from both the individual

and equilibrium perspective. The existing literature primarily evaluates this elasticity from

the individual perspective; in most markets, increased labor supply of some workers does not

directly impact wages of other workers. However, in gig-economy settings and particularly in

taxi and ride-hail markets, increases in labor supply can directly dampen the returns to all drivers

through increased waiting times. With this dynamic in mind, we evaluate the equilibrium labor

supply effects of taxi fare increases, such as recent policy designed to increase driver wages

among NYC taxi drivers. In this case, fare increases would be expected to impact both supply,

through the aforementioned channel, as well as demand.

23As we assume driver breaks are fully captures by the state variable, one might ask if our model embeds some
behavioral aspects — such as effort targeting — into the estimated transition functions F . To accommodate this
possibility, we consider an effort targeting hypothesis whereby drivers whose income surpasses a certain level exert
less effort to find additional rides, instead of quitting outright; this results in “soft-quitting” whereby rising incomes
causes drivers to soft-quit by exerting progressively lower effort (It is debatable whether such a model would be
either rational or boundedly rational). Nevertheless, as long as the effort policy function can be characterized by
the driver’s state variable of hours worked and earnings accrued, we can identify these effects non-parametrically
and control for them by conditioning drivers’ decisions on their state. We have performed additional analysis in
Section A.3.1 to control for drivers’ exact states and show that cumulative earnings at a fixed state is not predictive of
total shift work time. This casts doubt on the hypothesis that higher earnings (ceteris paribus) triggers “soft quitting”,
which otherwise would be manifested in shorter predicted shift work times going forwards. As a result, we do not
believe that F embeds the effort-targeting hypothesis.
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TABLE 7. Simulated Elasticity of Stopping at 8.0-8.5 Hours with Respect to Income

(1) (2) (3)

Full Set Combined AdjustedIncomes

Total Income -0.498* - -
(0.286) - -

Income in Hour 1 0.244 -0.255 -0.793
(0.360) (0.359) (0.828)

Income in Hour 2 0.241 -0.258 0.498
(0.400) (0.364) (0.654)

Income in Hour 3 0.242 -0.257 0.795
(0.450) (0.349) (0.645)

Income in Hour 4 0.993* 0.495 0.329
(0.460) (0.361) (0.652)

Income in Hour 5 1.003* 0.504 -0.496
(0.464) (0.364) (0.658)

Income in Hour 6 0.051 -0.447 -0.071
(0.469) (0.365) (0.671)

Income in Hour 7 1.197*** 0.698* 1.334**
(0.461) (0.365) (0.668)

Income in Hour 8 0.261 -0.238 0.144
(0.493) (0.351) (0.633)

Observations 18,345 18,345 18,345
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table replicates Table 4 with simulated data, and is based on Table 2 in Thakral and Tô (2021). Data
are simulated from the dynamic choice model. Asterisks (*) and (**) indicate significance at or above the
5% and 1% level.

6.1. Incorporating Latent Heterogeneity. Because this section surrounds quantification of an

important and oft-debated parameter, we adapt our model to be more realistic by incorporating

unobserved heterogeneity among drivers. We allow for each observed driver-shift type k to

further have two latent shift types α ∈ {1, 2}. For example, drivers may be more or less tired at

the start of the day and operate according to different costs of time. In this extension, we allow

cost functions to vary flexibly by each observable type k and latent-type α, i.e.,

uk,α(r, h) = r + θ1,k,αh+ θ2,k,αh
2. (7)
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By definition, we do not observe latent type classifications α. To estimate the model, we use

an EM-algorithm that allows for jointly estimating parameters and the latent type distributions

via an iterative maximum likelihood routine as developed in Arcidiacono and Jones (2003).

In this method, a candidate type distribution is assigned (the E-step) and, given this, cost

parameter estimation is conducted (the M-step) identically to the approach outlined in Section 4.4.

Likelihood values for the type distribution are then updated via Bayes’ rule and the process is

iterated until type distributions converge. In Section A.5.2 we provide additional results without

latent heterogeneity, which reveal elasticities that are very similar.

6.2. Estimating Individual Labor Supply Elasticity. Our estimated model allows us to recover

an estimate of the labor supply elasticity of taxi drivers with respect to wage rates. Given the

day-to-day nature of earnings variation and driver labor supply choices, it is natural to interpret

these as short-run, intensive-margin inter-temporal substitution (Frisch) elasticities. While these

estimates are the target of the literature reviewed in Section 2, we have shown that existing

approaches are flawed when it comes to identifying them. We estimate these elasticities by

constructing counterfactual wage rate increases and simulating driver shifts and expected work

hours with and without the increases. For example, we consider a 10% increase in all earnings

available to a single driver across the joint distribution of earnings and time draws. This would

represent a 10% increase in the measurement of wages preserving the stochasticity of wages

as well as the negative auto-correlation discussed in Section 2.1. This counterfactual assumes

that demand as well as the supply of all rivals is held fixed. In other words, we make a large

markets assumption: when a single driver faces the earnings increase, this driver’s impact on

demand and any spillover effects to other drivers are negligible.

Table 8 displays the estimated elasticities of hours worked with respect to earnings rates.

They show that for a range of earnings increases from 5–25%, the estimated mean hours worked,

across all driver types, increases by up to 105 minutes, implying individual elasticities between

0.64–0.93. Table 5 in Farber (2015) estimates aggregate elasticities to be 0.589. That our estimates

are slightly higher is not surprising: there is a downward bias in the reduced form approach

due to drivers’ within-shift declining productivity of earnings.

We refer to these estimates as individual labor supply elasticities because they hold search

times fixed, implying that the labor supply of other drivers and consumer demand are both held
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TABLE 8. Individual Labor Supply Elasticity

Earnings Change Hours Worked Implied Elasticity
P25 Mean P75 Mean Std. Err.

Baseline 5.72 7.47 9.38 . .
5% increase 5.95 7.71 9.63 0.638 0.284
10% increase 6.22 8.02 10.00 0.730 0.281
18% increase 6.59 8.58 10.77 0.826 0.289
25% increase 7.09 9.21 11.68 0.933 0.294

This table reports the distribution of estimated work-hours resulting from simulating shifts at the baseline
as well as across a series of increases to the earnings from each trip, assuming that demand and all
other taxis behavior remains fixed. Implied elasticities are computed at the mean of hours worked.
Standard errors are obtained by resampling entire driver shifts, with replacement, and re-estimating
model parameters for each driver-shift type and re-simulating data in equal proportion to how each
driver-shift is distributed. We conduct the exercise across 200 samples, compute the weighted average
elasticity across shift types, and report standard deviations in parentheses.

fixed. If a wage increase were implemented on the entire market, other drivers would change

their behavior and consequently lead to endogenous changes in search times. In addition, in

this exercise we are holding fixed passenger prices: if passenger prices increased, this would

decrease demand for taxi rides and again lead to longer search times. Therefore our estimates

can be interpreted as the effect of an exogenous subsidy to an individual driver holding all

else equal. Finally, driver preferences are identified from transient earnings variation, so our

elasticity estimates can be interpreted as changes due to transient earnings shocks; drivers may

exhibit different tradeoffs when earnings changes are permanent.

Looking to other comparable settings, our individual elasticity estimates are quite close to

the intertemporal elasticity estimate of 0.704 in response to a 10% earnings shock as reported

in Pistaferri (2003), which studies labor supply responses to earnings shocks and expectations

among households in Italy. Angrist et al. (2021) conduct a leasing experiment among Uber

drivers and estimate intertemporal substitution elasticities around 1.2 – 1.8. There, the authors

remark that these elasticities are likely to be larger than those for total hours worked, since many

Uber drivers have other jobs (Hall and Krueger (2018)). 24

24See also Table 1 of Chetty et al. (2011), which among other statistics provides an extensive meta-analysis of
quasi-experimental evidence on intensive-margin labor supply elasticities, highlighting an average inter-temporal
substitution elasticity of 0.54.
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We implicitly assume that in a given day the earnings process Fkx is exogenous. One threat

to our strategy would be the case that drivers endogenously choose their levels of search effort,

perhaps at higher cost, when the earnings profile changes. In Section A.3 we conduct a simple

test for this by analyzing drivers who achieve unexpectedly high earnings early in the shift. We

find that such high earnings do not predict subsequently higher earnings, implying that drivers

who perceive the day to be more profitable than it is do not earn higher profits in later periods.

This suggests that endogenous effort is not confounding our analysis of earnings elasticities.

Although individual elasticities are an important quantity of interest, we can also use our

data and empirical approach to learn more. The reason for including the specific case of 18% is

that in September, 2012 the NY TLC hiked fares by 18%, which affected search times through

both passenger demand and equilibrium effects of labor supply. In the next section we use this

change in fares to evaluate and compare individual labor supply elasticities with aggregate or

equilibrium labor supply elasticities and consider these effects in the context of recent minimum

wage legislation applied to taxi and ride-hail workers in New York City.

6.3. Equilibrium Elasticities and Wage Policy. On December 19, 2022 the New York Taxi and

Limousine Commission implemented the first fare hike in ten years under a proposal known as

"Raise For All".25 Fares increased through a mix of increased base fares and increased surcharges

during rush hour trips and trips to airports. The net effect is estimated by the TLC to increase

average passenger fares by 23%.26

We investigate how much work hours will be impacted by the rising fares and whether the

data generated by such a change can be informative about drivers’ earnings elasticities. Data

are not available to study the 2022 event as the TLC no longer provides access to driver and

medallion identifiers. We instead study this question by considering the last time in which fares

were changed. On September 4, 2012 the NYC TLC raised base taxi fares across for all drivers

and customers. The distance fee increased from $2.00 per-mile to $2.50 per-mile, the JFK airport

flat-fee increased from $45 to $52 and the Newark Liberty Airport surcharge increased from $15

to $17.50. Collectively these changes amounted to an 18% increase in the expected cost of a trip.

25See details in Hartwell et al. (2022).
26This estimate seems to compare the existing distribution of trips and routes and multiplies these trips by the

new fares. In reality, even if we ignore potential supply-side effects, the demand response alone on more affected
routes would likely dampen this aggregate estimate.
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At the same time, drivers also became more competitive: the number of daily active medallions

grew by 24.5% between a two-month period before and after the fare hike.27

Fare increases of this form impact the earnings process through three channels. First, drivers

directly earn more from each trip according to the new fare schedule. Second, rival drivers

change their labor supply behavior and the level of competition and therefore the expected

searching times are impacted. Third, there is a demand response: higher trip prices depress

demand and increase the expected search times for taxi drivers. In determining individual

labor supply elasticities we only considered the impact of the first channel. Market-wide price

changes will give rise to different work-hours elasticities because they also impact the other two

channels.

An important caveat is that our parameter identification strategy allows us to estimate drivers’

short-run Frisch elasticities in the absence of wealth effects or other long-run considerations. The

2012 fare change was permanent and therefore may have induced such effects. Nevertheless,

our primary aim is twofold: first, we want to contrast drivers’ elasticities from direct changes

to individual earnings changes from those induced by a comparable change in product prices.

Second, we want to demonstrate that the New York Taxi and Limousine Commission overesti-

mates driver benefits from fare hikes. For this goal, we argue that our Frisch estimates provide

good upper-bounds on the long-run uncompensated (Marshallian) elasticities. This is because

the latter also captures wealth effects, which counteracts the substitution effect. Moreover, the

evidence suggests that even utility-compensated long-run (Hicksian) elasticities are less than

Frisch elasticities (see, e.g., Table 1 of the survey Chetty et al. (2011)).

To measure the short-run elasticity of hours worked with respect to fares, we use our model

and estimated parameters to simulate data under the state transitions from (1) the two months

before and (2) the two months after the September 2012 fare increase. Critically, the state transi-

tions embed all relevant information drivers need to formulate new stopping rules. Therefore,

by simply observing the earnings process encountered by drivers before and after the change

took effect, we can avoid modeling the search and matching process and thereby also avoid the

27While we do not explicitly model entry, this change implies an extensive margin elasticity around 1.36. Paired
with our intensive margin elasticity estimates, our findings are broadly consistent with the aggregate elasticity
estimate of 1.8 in Frechette, Lizzeri and Salz (2019). The extensive-margin effect seems to be driven mostly by
increased activity in the overnight hours, when the regulatory medallion caps rarely bind.
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additional restrictive assumptions that are necessary to estimate such a model. By simulating

driver shifts and hours worked across the pre- and post-fare hike periods, we can compute

market-wide labor supply elasticities.

TABLE 9. Individual vs. Market Labor Supply Elasticity

Baseline I. 18% Individual II. 18% Market
Wage Increase Fare Increase

Hours Hours Elasticity ∆ Welfare Hours Elasticity ∆ Welfare

Overall 7.47 8.58 0.826 +13.10% 8.06 0.122 +7.79%
Weekday, AM 7.30 8.28 0.660 +11.89% 7.58 0.217 +8.04%
Weekday, PM 7.92 9.08 0.707 +12.09% 8.08 0.110 +7.99%
Weekend, AM 7.48 8.67 0.762 +12.75% 7.11 -0.280 -3.82%
Weekend PM 7.30 8.66 0.868 +18.06% 7.55 0.188 +15.45%

This table shows the labor hours and welfare effects of an 18% individual earnings increase (panel I) and
an 18% market fare increase (panel II). The baseline and Panel I are estimated on a sample from Aug 1,
2012 – September 3, 2012. Panel II is estimated on a sample from September 4, 2012 – October 31, 2012,
just after the fare change. Welfare is computed as σ−1

ϵ

∑
i log(exp((ri +C(hi|θτ(i))/σϵ) + 1/σϵ)) for each

driver-shift i and shift type τ(i).

Table 9 reports the mean work hours across all simulated shifts before and after the fare

change along with implied work-hours elasticities and changes to driver welfare. Averaging

across shifts and drivers, the overall elasticity with respect to fares is 0.122, or about 85% less

than the elasticity with respect to individual earnings. This implies smaller benefits to a single

driver once we account for the market adjustment to the wage increase. This comparison is

varied across different types of shifts, likely reflecting divergence in both demand and driver

preferences across groups in the pre- and post-periods. Our findings align with Hall et al.

(2023), who study Uber fare increases and find that market re-equilibration due to increased

labor supply and reduced demand lead to very limited effects of driver earnings. Day-shift

weekend simulations suggest that drivers actually work less after the fare hike; there, drivers on

average work 30 minutes less when the fare increases. This result captures the fact that earnings

opportunities after the September 4, 2012 fare increase decline in hours worked for this shift

type. At high levels of cumulative work time, the post-fare change average spell wages are

below those of the pre-fare change period.28 We also derive welfare estimates to evaluate drivers’

28We detail these patterns in Section A.4, and note that the patterns observed in the data will likely also embody
longer-run elasticities due to the permanent nature of the fare hike.
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overall benefits net of costs. An average driver is about 13% better off from an individual

earnings increase, compared to 8% better off from a fare increase.

The main goal of the exercise in Table 9 is to demonstrate the importance of distinguishing

market-wide price and earnings variation from individual earnings variation in the assessment

of labor supply elasticity. Since prices are regulated and therefore set exogenously, price changes

induce both a demand and supply response as well as an equilibrium adjustment to expected

search times. More generally, earnings variation may be induced by shifts in demand or supply.

In all of these cases, drivers’ forward-looking tradeoffs and therefore labor supply decisions

are impacted in unpredictable ways: demand elasticities may vary spatially, shifts in demand

may be local depending on what events are taking place, etc. The mission to measure labor

supply elasticity from observational data is inherently complicated by these factors. This is

where our counterfactual approach can offer a clean and clear alternative; by simulating driver

shifts subject to a uniform earnings increase, we are able to replicate a wage experiment without

the confounding effects of equilibrium adjustments.

7. CONCLUSION

We use a comprehensive dataset of trips and work hours among New York City taxi drivers

to take a new approach to a long-running question of drivers’ wage elasticities by modeling

taxi drivers’ labor supply decisions as emerging from a dynamic optimal stopping problem. Our

model explicitly assumes that drivers have standard preferences for labor and leisure, implying

standard behavior stemming from upward sloping labor supply curves.

We estimate our model and use it to simulate a panel of driver shifts. We then conduct a static

analysis of drivers’ labor supply behavior that is analogous to specifications used in previous

literature. We demonstrate that we can replicate the same patterns in the literature, in which

labor supply elasticity may appear to have a negative sign. We show that these patterns arise

because of previously unexplored intra-daily dynamics in earnings per hour. In particular,

drivers become less productive as they work longer, and there is also negative autocorrelation

in long trips that generate apparent earnings shocks in a static framework.

Our results reconcile a twenty-five-year debate in this literature. More broadly, these findings

suggest that once we account for the dynamic incentives in taxicab drivers’ labor supply
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decisions, there is no need to add behavioral parameters to the model to explain their quitting

behavior. However, we note that behavioral patterns may serve as useful heuristics for drivers

that happen to coincide with the more complicated dynamic optimization problem.

Finally, our model is also capable of answering the question of what is the intertemporal labor

supply elasticity of New York City taxi drivers. We find individual elasticities of 0.64–0.93. These

values are strikingly close to estimates obtained in other settings. However, to evaluate wage

policy among drivers, such as the recent fare hike among New York taxi drivers, we also have to

acknowledge the equilibrium impact of wage changes as it transmits from demand elasticities

as well as the spillovers from all drivers re-optimizing their search behavior. We find that the

average market-level elasticity to a 18% wage hike is 0.12, or about a sixth of the elasticity

obtained under a direct 18% earnings increase. This result implies that earnings variation due

to price changes cannot be directly used to measure labor supply elasticities, particularly in

settings where there are network effects such as platform-based labor markets.

REFERENCES

ALTONJI, J. G. (1986). Intertemporal substitution in labor supply: Evidence from micro data. Journal of

Political Economy, 94 (3, Part 2), S176–S215.

ANDERSEN, S., BRANDON, A., GNEEZY, U. and LIST, J. A. (2014). Toward an understanding of reference-

dependent labor supply: Theory and evidence from a field experiment. Tech. rep., National Bureau of Economic

Research.

ANGRIST, J. D., CALDWELL, S. and HALL, J. V. (2021). Uber versus taxi: A driver’s eye view. American

Economic Journal: Applied Economics, 13 (3), 272–308.

ARCIDIACONO, P. and JONES, J. B. (2003). Finite mixture distributions, sequential likelihood and the em

algorithm. Econometrica, 71 (3), 933–946.

ASHENFELTER, O., DORAN, K. and SCHALLER, B. (2010). A shred of credible evidence on the long-run

elasticity of labour supply. Economica, 77 (308), 637–650.

BARZEL, Y. (1973). The determination of daily hours and wages. The Quarterly Journal of Economics, 87 (2),

220–238.

BENKARD, C. L. (2004). A dynamic analysis of the market for wide-bodied commercial aircraft. The

Review of Economic Studies, 71 (3), 581–611.

BESANKO, D., DORASZELSKI, U. and KRYUKOV, Y. (2014). The economics of predation: What drives

pricing when there is learning-by-doing? American Economic Review, 104 (3), 868–897.

42



BRANCACCIO, G., KALOUPTSIDI, M. and PAPAGEORGIOU, T. (2020). Geography, transportation, and

endogenous trade costs. Econometrica, 88 (2), 657–691.

BROWNING, M., DEATON, A. and IRISH, M. (1985). A profitable approach to labor supply and commodity

demands over the life-cycle. Econometrica: journal of the econometric society, pp. 503–543.

BUCHHOLZ, N. (2022). Spatial equilibrium, search frictions, and dynamic efficiency in the taxi industry.

The Review of Economic Studies, 89 (2), 556–591.

BURNSIDE, C., EICHENBAUM, M. and REBELO, S. (1993). Labor hoarding and the business cycle. Journal

of Political Economy, 101 (2), 245–273.

CALDWELL, S. and OEHLSEN, E. (2018). Monopsony and the gender wage gap: Experimental evidence

from the gig economy. Massachusetts Institute of Technology Working Paper.

CAMERER, C., BABCOCK, L., LOEWENSTEIN, G. and THALER, R. (1997). Labor supply of new york city

cabdrivers: One day at a time. The Quarterly Journal of Economics, 112 (2), 407–441.

CASTILLO, J. C. (2022). Who benefits from surge pricing? Available at SSRN 3245533.

CHEN, K.-M., DING, C., LIST, J. A. and MOGSTAD, M. (2020). Reservation wages and workers’ valuation of

job flexibility: Evidence from a natural field experiment. Tech. rep., National Bureau of Economic Research.

CHEN, M. K., ROSSI, P. E., CHEVALIER, J. A. and OEHLSEN, E. (2019). The value of flexible work:

Evidence from uber drivers. Journal of political economy, 127 (6), 2735–2794.

CHETTY, R., GUREN, A., MANOLI, D. and WEBER, A. (2011). Are micro and macro labor supply

elasticities consistent? a review of evidence on the intensive and extensive margins. American Economic

Review, 101 (3), 471–75.

CHRISTENSEN, P. and OSMAN, A. (2023). The demand for mobility: Evidence from an experiment with uber

riders. Tech. rep., National Bureau of Economic Research.

CRAWFORD, V. P. and MENG, J. (2011). New york city cab drivers’ labor supply revisited: Reference-

dependent preferences with rational expectations targets for hours and income. The American Economic

Review, 101 (5), 1912–1932.

DUONG, H. L., CHU, J. and YAO, D. (2022). Taxi drivers’ response to cancellations and no-shows: New

evidence for reference-dependent preferences. Management Science.

FARBER, H. S. (2005). Is tomorrow another day? the labor supply of new york city cabdrivers. The Journal

of Political Economy, 113 (1), 46–82.

— (2008). Reference-dependent preferences and labor supply: The case of new york city taxi drivers. The

American Economic Review, 98 (3), 1069–1082.

43



— (2015). Why you can’t find a taxi in the rain and other labor supply lessons from cab drivers. The

Quarterly Journal of Economics, 130 (4), 1975–2026.

FEHR, E. and GOETTE, L. (2007). Do workers work more if wages are high? evidence from a randomized

field experiment. American Economic Review, 97 (1), 298–317.

FRECHETTE, G. R., LIZZERI, A. and SALZ, T. (2019). Frictions in a competitive, regulated market:

Evidence from taxis. American Economic Review, 109 (8), 2954–92.

HAGGAG, K., MCMANUS, B. and PACI, G. (2017). Learning by driving: Productivity improvements by

new york city taxi drivers. American Economic Journal: Applied Economics, 9 (1), 70–95.

HALL, J. V., HORTON, J. J. and KNOEPFLE, D. T. (2023). Ride-sharing markets re-equilibrate. Tech. rep.,

National Bureau of Economic Research.

— and KRUEGER, A. B. (2018). An analysis of the labor market for uber’s driver-partners in the united

states. Ilr Review, 71 (3), 705–732.

HARTWELL, A., METZ, T. and DIGIOVANNI, J. (2022). 11/15/22 commission meeting.

HECKMAN, J. and MACURDY, T. (1980). A dynamic model of female labor supply. Review of Economic

Studies, 47 (1), 47–74.

HUANG, L. and SMITH, M. D. (2014). The dynamic efficiency costs of common-pool resource exploitation.

American Economic Review, 104 (12), 4071–4103.

LAGOS, R. (2000). An alternative approach to search frictions. Journal of Political Economy, 108 (5), 851–873.

— (2006). A model of tfp. The Review of Economic Studies, 73 (4), 983–1007.

LEVESON, I. F. (1967). Reductions in hours of work as a source of productivity growth. Journal of Political

Economy, 75 (2), 199–204.

MACURDY, T. E. (1981). An empirical model of labor supply in a life-cycle setting. Journal of political

Economy, 89 (6), 1059–1085.

OETTINGER, G. S. (1999). An empirical analysis of the daily labor supply of stadium vendors. Journal of

political Economy, 107 (2), 360–392.

PENCAVEL, J. (2015). The productivity of working hours. The Economic Journal, 125 (589), 2052–2076.

PETTERSON, M. S. (2022). Estimation of a latent reference point: Method and application to nyc taxi

drivers, working Paper.

PISTAFERRI, L. (2003). Anticipated and unanticipated wage changes, wage risk, and intertemporal labor

supply. Journal of Labor Economics, 21 (3), 729–754.

RICCI, J. A., CHEE, E., LORANDEAU, A. L. and BERGER, J. (2007). Fatigue in the us workforce: prevalence

and implications for lost productive work time. Journal of occupational and environmental medicine, 49 (1),

44



1–10.

ROSAIA, N. (2023). Competing Platforms and Transport Equilibrium: Evidence from New York City. Tech. rep.,

mimeo, Harvard University.

ROTEMBERG, J. J. and SUMMERS, L. H. (1990). Inflexible prices and procyclical productivity. The Quarterly

Journal of Economics, 105 (4), 851–874.

RYAN, S. P. (2012). The costs of environmental regulation in a concentrated industry. Econometrica, 80 (3),

1019–1061.

SCHMIDT, M.-A. (2019). Valuing flexibility: A model of discretionary rest breaks, working Paper.

THAKRAL, N. and TÔ, L. T. (2021). Daily labor supply and adaptive reference points. American Economic

Review, 111 (8), 2417–43.

WAN, Y. and XU, H. (2014). Semiparametric identification of binary decision games of incomplete

information with correlated private signals. Journal of Econometrics, 182 (2), 235–246.

WEST, C. P., TAN, A. D., HABERMANN, T. M., SLOAN, J. A. and SHANAFELT, T. D. (2009). Association

of Resident Fatigue and Distress With Perceived Medical Errors. JAMA, 302 (12), 1294–1300.

ONLINE APPENDIX

APPENDIX A. DATA: ADDITIONAL DETAILS

A.1. Data Cleaning and Preparation.

A.1.1. Data Cleaning. We begin with raw data obtained from the New York City Taxi and Limousine

commission consisting of all yellow taxi trip and fare data from July 1 to September 3, 2012. The raw

files consist of 29,939,090 observations. To obtain a structure suitable for estimating driver labor supply

behavior, we throw out any data that appears contaminated by severe measurement error, key missing

information, or highly unusual patterns.

We closely follow previous work using the same TLC dataset to prepare our data for the analysis

of shifts (e.g., Haggag et al. (2017), Thakral and Tô (2021)). We start by cleaning the raw TLC data of

obvious measurement errors or apparent extraneous data produced by duplicate or false entries or those

data produced from electronic testing. The data are organized trip-by-trip, where we observe medallion

identifiers and exact pickup and drop-off date-times. Our first step is to establish criteria for the change

of shifts. To do this, for every driver we measure the time between trips and, for trip times with gaps

beyond five hours, we define a change of shift (See discussion in Section 2). Next, we classify every

driver-shift with a unique identifier. There are 1,408,646 driver-shifts in our full sample. When we identify
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a potentially erroneous trip or data problem, we flag the entire shift as having a problem and drop it from

our analysis sample.

To begin, we flag the following problematic observations:

(i) Duplicates on medallion and pickup date-time

(ii) Missing or zero entry for trip distance or trip duration

(iii) Trip duration far less than feasible for trip distance

(iv) Trip distance far longer than feasible for trip duration

(v) Trip fare less than minimum TLC prices for normal fares (indicated as fare code=1)

(vi) Trip times less than 10 seconds

(vii) Trip times less than 60 seconds with fare greater than $10

(viii) Trips from Manhattan to JFK Airport with trip duration less than ten minutes

(ix) Trips from Manhattan to JFK Airport with trip distance less than 10 miles

(x) Trips with pickup time occurring before the previous trip’s drop-off time

(xi) Latitude or longitude of trip could not be mapped to a destination within New York City or

Newark Airport

Next, we flag the following problematic shifts:

(i) Shifts with more than one car per driver within a shift

(ii) Shifts with total duration longer than 18 hours or shorter than 2 hours

(iii) Shifts with 3 or fewer trips in total

We drop shifts with the above errors, leaving us with a data set of 8,220,299 observations, 30,231

drivers, and 444,317 unique shifts across July 1 to September 3, 2012.29

A.1.2. Predicting Medallion Types. The TLC issues different types of medallions with different restrictions

that may impact driver incentives. Although we do not have data on medallion types, we screen

medallions for patterns that indicate a higher likelihood of being fleet medallions (subject to higher levels

of minimum usage and often stringent turnover hours) vs. owner-operator medallions (which have less

onerous requirements). Our screen is constructed as follows:

(i) Number of drivers per medallion less than 4

(ii) Number of trips per medallion greater than 200

The first criterion checks that the taxi medallion is only utilized by a small number of individuals,

for example licensed individuals within a family. The second criterion ensures that the small number

29Note we conduct an analogous data cleaning routine for the post-fare change period, September 4, 2012 to
October 31, 2012, in constructing our sample for analyzing the fare hike counterfactual in Section 6.
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FIGURE 4. Rate of Earnings by Cumulative Hours Worked
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(a) Spell Wage (b) Running Wage

TLC from January to August 2012. This figure shows how earnings evolve with cumulative hours
worked. Panel (a) shows the relation between spell wage (residual to location and time fixed effects)
and cumulative hours worked. Panel (b) shows the relation between the residualized running wage and
cumulative hours worked. Both panels depict the share of hours in which drivers quit, with units on the
right y-axis.

of individuals is not a consequence of scant usage of the medallion. Although this screen is simple and

coarse, it predicts well the probability that the medallion will be used during the witching hour, between

4–5pm, in which fleet medallions turn over to the evening shift. The benefit of using this screen without

incorporating the witching hour directly is that some owner-operators are only active in the evening shift,

for which there is no equivalent of the witching hour.

A.2. Additional Descriptive Evidence.

A.2.1. Declining Earnings Conditional on Driver and Day-of-week by Hour. Figure 4 shows that the declining

earnings pattern persists after controlling for driver-level fixed effects.

A.2.2. Effect of Hours Worked on Search Radius. Figure 5 shows how the distance of passenger drop-off to

subsequent passenger pickup changes as drivers work longer hours. The figure overlays a histogram of

quitting probability by cumulative hours worked. It shows that average search distance does not change

until about nine hours of work, after which it slowly increases. For reference, an average (long) city block

in New York City is about 900 ft., or about .17 miles.

A.2.3. Thakral and Tô (2021) Specification Discussion. The estimates of recency bias in Table 2 of Thakral and

Tô (2021) (hereafter, TT) include a control variable total cumulative income earned. Since this specification

also controls for cumulative income earned during each hour up to hour 8:00, and because the data
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FIGURE 5. Search Distance by Cumulative Hours Worked
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This figure shows the increase in average straight-line distance of passenger drop-off to subsequent
passenger pickup, by cumulative hour worked.

sample consists of trips and quitting decisions that occur from 8:20–8:40, the cumulative income variable

includes any income earned during work hours hours 8:00–8:20.

In order to evaluate the elasticity of quitting with respect to earnings in a specific hour, TT first sums

the coefficients for each preceding hour with the coefficient on cumulative income, and then scales this

sum by a factor to transform it from a level effect into an elasticity. However, we found the summed

coefficient is likely confounded with the effect of additional earnings in the 8:00-8:20 period.

To illustrate this, consider a simplified specification in which there are just two hours, 1 and 2:

y = β0 + β1x1 + β2x2 + β3(x1 + x2 + x3) + ϵ. Where y ∈ {0, 1} is the quit decision, xk is income earned

in hour k and x3 is total cumulative income. Thus β3 is the coefficient on total cumulative income. To

measure the effect of hour 2 income, the TT approach would report the sum β2 + β3. However, since x3 is

correlated with x2, the effect of interest is δy
δx2

= β2 + β3 + β3
δx3

δx2
.

The sign of this bias in a given hour is somewhat ambiguous for reasons we explore in this paper. For

example, we showed that some income shocks induce large negative serial correlation in earnings in

subsequent hours, implying a negative bias. On the other hand, a day with a high demand shock will

induce positive correlation in earnings across all hours, implying a positive bias. However, these biases

tend to be more positive when we condition earnings on specific locations (in effect, purging a key source

of the negative bias), resulting in δx3

δx2
> 0 and β3<0 in estimation, δy

δx2
< β2 + β3 . Thus, there is likely an

upwards bias in the reported results for income once we condition on earnings in a specific location.
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By implementing our preferred adjustment of the time window, we nevertheless obtain the TT result to

an extent by showing there remains evidence of recency bias, albeit weaker. We then show this remaining

recency bias largely disappears when conditioning on high continuation-value regions of earnings, and

yet amplifies when conditioning on low continuation-value regions of earnings.

A.2.4. Elasticity of Stopping By Earnings Hour: Alternative Location Definition. In Table 10 we display the

Manhattan/Brooklyn vs. Outer Borough alternative of Table 4. Outer borough locations, analogous to

the low-continuation value locations in Table 4, show positive probability of quitting in the final hour.

Manhattan/Brooklyn locations are similarly captured by high continuation value locations.

A.3. Prior Earnings and Endogenous Effort. In this section we investigate whether taxi drivers engage in

higher (or lower) “effort” when they perceive earnings opportunities to be high (or low). We specifically

characterize effort as the extent to which drivers can choose their earnings per hour across some support

by paying an extra cost. Endogenous effort, or effort that varies with demand or supply shocks, would

imply that quantities such as earnings per hour, wage spells, and average wages are all equilibrium

objects that cannot be imposed as policy counterfactuals.

To test for endogenous effort, we evaluate whether drivers who, through lucky draws of trips, experi-

ence consistently higher or lower earnings relative to other drivers within the first four hours of the same

shift (and who therefore perceive higher or lower overall demand) achieve different expected payoffs in

the subsequent four hours. The question is whether drivers who perceive high demand but in reality

were lucky will adjust their effort levels to be more productive later in the day. We evaluate this via a

regression that compares, among those drivers who work at least eight hours, the expected earnings of a

driver in hours four through eight conditional on their first four hours. To account for the fact that there

are predictable hourly patterns of earnings, we control for the hour in which the drivers’ shifts begin.

Table 11 reports the results. We see that, conditional on four hour earnings, each dollar earned in the

first four hours is associated with $0.031 additional earnings in the second four hours. In other words,

take a one standard deviation increase in hours 0-4 income (net of date, driver and starting hour controls)

of $31.87. A 1 SD increase in income over this period would predict a subsequent gain of $0.99 over the

next four hours. To verify that our selection of hours 4 and 8 are not driving these results, we report

alternative versions of the test in each cell and see similar results.

We interpret these results to imply that drivers’ day to day success with earnings, insofar as it shapes

their beliefs about future earnings within the same day, does not lead to meaningful changes in their

ability to earn income compared to other drivers in the same market. Effort is difficult to measure, but

these results give us some confidence that it is not driving the earnings schedules of drivers.
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TABLE 10. Elasticity of Stopping at 8.0-8.5 Hours with Respect to Income (Alt. Defini-
tions)

(1) (2)
VARIABLES Manhattan/Brooklyn Outer-Boroughs

Manh./Bkln. Income in Hour 1 0.407***
(0.145)

Manh./Bkln. Income in Hour 2 0.070
(0.187)

Manh./Bkln. Income in Hour 3 -0.256
(0.206)

Manh./Bkln. Income in Hour 4 -0.034
(0.215)

Manh./Bkln. Income in Hour 5 0.133
(0.215)

Manh./Bkln. Income in Hour 6 0.267
(0.210)

Manh./Bkln. Income in Hour 7 0.741***
(0.214)

Manh./Bkln. Income in Hour 8 -0.244
(0.260)

Outer-Boro Income in Hour 1 -0.318***
(0.117)

Outer-Boro Income in Hour 2 -0.277
(0.171)

Outer-Boro Income in Hour 3 0.162
(0.196)

Outer-Boro Income in Hour 4 0.054
(0.209)

Outer-Boro Income in Hour 5 0.278
(0.217)

Outer-Boro Income in Hour 6 0.220
(0.218)

Outer-Boro Income in Hour 7 -0.114
(0.239)

Outer-Boro Income in Hour 8 3.447***
(0.477)

Observations 129,153 129,153
R-squared 0.367 0.368

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of cumulative income in each hour of the day on the probability of stopping after the
eighth hour of cumulative work time. All estimates are presented as elasticities relative to the baseline probability of
stopping. The sample consists of a 25% sample of New York TLC data from Jan 1, 2012 – Sep 3, 2012. Specifications
include controls for driver, day-of-week x hour, week-of-year, drop-off neighborhood, cumulative income and cumu-
lative work time. Column (1) replicates Table 2 of Thakral and Tô (2021) but limits hourly cumulative earnings to
trips with origins in Manhattan and Brooklyn, includes a withheld category of hour 1 earnings, and uses observa-
tions from hour 8:00 to 8:20. Column (2) repeats the exercise with earnings from Bronx, Queens and EWR Airport.

A.3.1. A non-parametric test. In addition to the above, we present non-parametric evidence that drivers’

labor supply decisions are not responsive to past earnings. We isolate 1.14M instances in which two taxi
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TABLE 11. Evidence for Exogenous Effort

Effect of 1 SD increase in earnings by:
Fourth Hour Fifth Hour Sixth Hour

E[Addt’l Earning] by Hour 7 $0.83 $0.22 $-0.02
E[Addt’l Earning] by Hour 8 $0.99 $0.35 $-0.01
E[Addt’l Earning] by Hour 9 $1.32 $0.62 $-0.00

This table shows the predicted change in earnings by the indicated hour in each row as a function of a
one standard deviation growth in expected earnings by the hour indicated in each column. These values
are obtained by regressing each row variable on shift income at the hour on each column along with date,
driver and starting hour fixed effects.

drivers who have each worked the same number of minutes on the same day dropped off passengers

less than 200 meters apart within a minute of each other. This precise matching allows us to control for

nearly identical labor conditions and, crucially, isolate the effect of differences in cumulative earnings on

subsequent work duration. We then demonstrate that differences in cumulative earnings at any point are,

in fact, not predictive of different shift durations.

Table 12 summarizes this evidence. It presents a regression of total shift duration on driver earnings,

where the sample is to limited to matched instances of two drivers with identical time spent on shift

and coinciding passenger drop-offs as described above, and where we implement fixed effects for each

matched pair. By comparing drivers in nearly identical situations, we neutralize the influence of differing

future earnings expectations, focusing solely on the impact of earnings up to that precise moment. Our

findings indicate that variation in past earnings, up to the point of each controlled drop-off, do not predict

different shift lengths. This suggests that any influence of past earnings on labor supply decisions is

likely through their correlation with anticipated future payoffs, rather than through direct effects.

We now turn to an analysis of dynamic forces that explain the past history of labor supply puzzles

among taxi drivers. The next two subsections detail how these dynamics—specifically related to earnings

expectations in light of drivers’ intra-daily productivity evolution and spatial search effects —shape

drivers’ labor supply decisions in ways that purely static models fail to capture.

A.4. The Evolution of Average Spell Wage by Cumulative Hours and Shift Types. Figure 6 shows

how average spell wages evolve with cumulative work hours by shift type. This figure does not directly

describe hourly patterns in spell wage, because shift start times are distributed across several hours in

the day and evening shifts. Its purpose, however, is to reconcile Table 9 which shows that, following an
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TABLE 12. Prior Earnings Effects on Labor Supply

Dependent Variable:
Log(Shift minutes) Shift minutes

Variable (1) (2)

Log(Cumulative Earnings) 0.0012 .
(0.0015) .

Cumulative Earnings . -0.0023
. (0.0047)

Constant 6.239 530.2
(0.007) (0.645)

Match Pair Fixed Effects ✓ ✓
N. Obs. 1,135,323 1,135,323

Note: Regression controls include fixed effects for each unique matched pair of driver drop-offs. Standard
errors are clustered at the matched-pair level.

FIGURE 6. The Time Path of Earnings by Cumulative Hours Worked
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This figure depicts, for each stated category of shifts, the expected spell wage earned by drivers with
each level of cumulative hours worked. “Pre” denotes the sample period September 4 – October 31, 2011.
“Post” denotes the sample period September 4 – October 31, 2012. The expectation is fitted via regression
on cumulative hours and cumulative hours squared.

18% fare increase, work hours decreased for Weekday PM drivers. In Figure 6 we see that this category is

the only one in which earnings opportunities decline relative to the pre-fare change period.
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A.5. Estimation: Additional Detail.

A.5.1. Likelihood Details. In this section we discuss our maximum likelihood procedure in more detail.

Our estimation is configured to maximize the log-likelihood function Equation 4. We found that, given a

high degree of within-driver idiosyncratic variation in drivers’ quitting decisions, for a few driver-type

subsets the solver converges on solutions with constant marginal costs and large idiosyncratic variation.

However, these parmeterizations do not fit quitting patterns well (drivers quitting probabilities are

uniform over time); in essence they over-weight continuation decisions. As a means of re-weighting the

likelihood to capture drivers’ quitting choices, we impose a penalty therm γ and estimate a likelihood

function via maximizing Equation 4 minus γ ∗ σ2
ϵ for each driver-shift type k. To choose γ we estimated

the model over a gridded range of γ and found the smallest value such that no parameter solutions across

driver types led to constant marginal costs, obtaining γ = 0.25.

A.5.2. Heterogeneous Model Estimates. This section includes extra results for both the heterogeneous model

and basic model.

Table 13 shows the parameter estimates for the heterogeneous model.

Table 14 shows the elasticity estimates for the simple model.

A.6. Model Fit. In this section we show evidence on model fit with respect to quitting probabilities at

different levels of hours worked. Figure 7 Panel A shows the fit of the dynamic logit model without latent

heterogeneity. Panel B shows the fit of the model with latent heterogeneity. The main difference is that

the latter model is able to better fit the cases of quitting after 12 hours. Note that only about 5% of drivers

quit after 12 hours of work. As such, these observations are not weighted heavily within the maximum

likelihood estimator. The model fits the data well in the vast majority of driver states that appear in the

data.

A.7. Simulation Details. In Section 5.1 we use the estimated model to simulate driver shifts and then

use those simulated data to reproduce key behavioral puzzles in the literature. For each simulated driver

of type d, we draw a sequence of trips as (drt, dht) from the empirical distribution F (dr, dh|r, h, x), draw

a sequence of drivers’ net shocks to the outside option ϵt, and for each decision point t together with

parameter estimates, we compute whether drivers’ value of quitting exceeds the value of continuing

search. As with estimation, there are eight persistent driver types i and five categories of demand

heterogeneity k ∈ {1, ..., 5}, defined as quintiles over average daily spell wages.
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TABLE 13. Heterogeneous Model Estimates

Driver-Type: Owner-Operated Fleet Owner-Operated Fleet

Shift-Type: AM AM PM PM
Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun

Estimates: Type I

σϵ
9.97 10.35 9.50 10.72 10.79 8.50 9.91 8.84

(0.69) (1.11) (0.87) (1.15) (0.56) (0.76) (0.86) (1.18)

θ1
131.28 106.41 170.43 145.56 101.54 77.68 102.31 82.65
(7.55) (5.62) (6.96) (6.19) (8.06) (7.30) (7.23) (6.47)

θ2
-5.08 -3.58 -6.96 -5.33 -3.59 -2.55 -3.68 -2.63
(0.25) (0.10) (0.20) (0.16) (0.30) (0.20) (0.21) (0.14)

Estimates: Type II

σϵ
9.31 9.69 8.88 10.03 10.11 7.90 9.29 8.25

(0.65) (0.47) (0.79) (0.86) (0.55) (0.71) (0.78) (0.84)

θ1
122.90 99.54 159.87 136.33 95.14 72.06 95.93 76.96
(7.05) (3.37) (6.51) (6.22) (8.11) (6.82) (6.76) (6.06)

θ2
-4.79 -3.37 -6.56 -5.02 -3.39 -2.40 -3.47 -2.47
(0.23) (0.13) (0.18) (0.12) (0.37) (0.19) (0.19) (0.11)

This table shows heterogeneous model estimates by latent type, shift, owner-status and week-
day/weekend. Standard errors are obtained by resampling entire driver shifts, with replacement,
and re-estimating state transitions, parameter estimates (panel I) and associated moments (panel II)
within each driver- and shift-type. We conduct the estimation across 200 samples for each group and
report standard deviations in parentheses.

TABLE 14. Individual Labor Supply Elasticity

Earnings Change Hours Worked Implied Elasticity
P25 Mean P75 Mean Std. Err.

Baseline 5.70 7.39 9.27 . .
5% increase 5.83 7.59 9.54 0.548 0.284
10% increase 6.10 7.87 9.80 0.657 0.281
18% increase 6.44 8.34 10.45 0.718 0.289
25% increase 11.10 8.80 11.10 0.764 0.294

This table reports the distribution of estimated work-hours resulting from simulating shifts at the baseline
as well as across a series of increases to the earnings from each trip, assuming that demand and all
other taxis behavior remains fixed. Implied elasticities are computed at the mean of hours worked.
Standard errors are obtained by resampling entire driver shifts, with replacement, and re-estimating
model parameters for each driver-shift type and re-simulating data in equal proportion to how each
driver-shift is distributed. We conduct the exercise across 200 samples, compute the weighted average
elasticity across shift types, and report standard deviations in parentheses.
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FIGURE 7. Model Fit Comparison
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(B) Latent Heterogeneity
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Simulation Steps. To simulate data we adopt the following procedure:

(i) Uniformly draw a demand quintile k. We assume drivers observe the day’s demand type and

have expectations that are consistent with the empirical state transition matrix for days of type

k.

(ii) Each shift begins at the initial state (0, 0), with zero cumulative income and time worked. For

each of 25,000 simulated shifts, we draw from the empirical distribution of realized sequences

of trips. This begins by selecting a random shift s from a driver-day of type i and demand

quintile k. We take the first trip of s and simulate spells as they occurred in the data. Denote the

simulated shift by ŝ.30

(iii) At the end of each spell, drivers weigh the opportunity to quit and receive an immediate payoff

against the option value of continuing to work longer and accrue additional earnings and time

costs.

(iv) If our simulated shift ŝ exceeds the set of trips observed in s, we append draws from another

randomly selected shift s′ given i and k by additionally matching the origin of the first draw in

s′ with the destination of our final observed trip in s.

(v) Finally, we combine each driver-day-type simulation together in proportion to their appearance

rates in the data to assemble the simulated data set.

A.8. Existence and Uniqueness of the Optimal Stopping Rule.

30Drawing from the realized distribution of trips ensures our simulated spells will follow the wage process
outlined in Section 2.1.
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Proof. Fix i and j, and therefore we omit the subscripts i and j for notation simplicity. We begin by

writing out the Bellman equation representing the driver’s optimal stopping problem:

V ∗
t (rt, ht, ℓt, ϵt) = max

{
u(rt, ht) + ϵt0, E

(
V ∗
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt
)
+ ϵt1

}
By Assumptions (i),

E
(
V ∗
t+1(rt+1, ht+1, ℓt, ϵt+1)

∣∣rt, ht, ℓt, ϵt
)
= E

(
V ∗
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt
)
.

Then V ∗
t (rt, ht, ℓt, ·) is a monotone increasing function, and the optimal stopping rule can be described as

follows: Let yt = 1 denotes the “quit” decision at time t, and δt = ϵt1 − ϵt0 as the difference of choice-

specific errors. Then the driver’s optimal stopping rule is given by the following threshold-crossing

strategy:

yt = 1 {δt ≥ δ∗t (rt, ht, ℓt)} ,

where δ∗t (rt, ht, ℓt) is obtained from

u(rt, ht) + δ∗t = E
(
Vt+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt
)
.

In the above derivation, the independence assumption between ϵt+1 and ϵt can be relaxed to a high-level

condition allowing for correlation, as in e.g. Wan and Xu (2014).

Consider the following numerical solution by iteration: let δ(0)t (·) = −∞ be the threshold of the

stopping rule. In this case, the driver always chooses to quit at each decision period. It follows that

V
(0)
t (rt, ht, ℓt, ϵt) = u(rt, ht) + ϵt0.

Now update the optimal decision and value function as follows:

δ
(1)
t (rt, ht, ℓt) = −u(rt, ht) + E

[
u(rt+1, ht+1)

∣∣rt, ht, ℓt
]
,

and

V
(1)
t (rt, ht, ℓt, ϵt) = max

{
u(rt, ht) + ϵt0, E

[
u(rt+1, ht+1)

∣∣rt, ht, ℓt
]
+ ϵt1

}
.

Clearly, δ(1)t ≥ δ
(0)
t and V

(1)
t ≥ V

(0)
t . Moreover, δ(2)t is obtained by solving δ̄t from the following equation

u(rt, ht) + δ̄t = E
[
V

(1)
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt

]
and then

V
(2)
t (rt, ht, ℓt, ϵt) = max

{
u(rt, ht) + ϵt0, E

[
V

(1)
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt

]
+ ϵt1

}
.
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We now show by induction that δ(s+1)
t (·) ≥ δ

(s)
t (·) and V

(s+1)
t (·) ≥ V

(s)
t (·): Because

V
(s)
t (·) ≥ V

(s−1)
t (·),

it follows that

V
(s+1)
t (·) ≥ V

(s)
t (·).

Thus,

E
(
V

(s+1)
t+1 (rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt

)
≥ E

(
V

(s)
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt

)
holds almost surely. Therefore, δ(s+1)

t (·) ≥ δ
(s)
t (·). Moreover, by Assumption (iii), δ(s)t is bounded above,

i.e.,

δ
(s)
t ≤ −u(rt, ht) + sup

r,h∈Supp(r,h)

u(r, h).

Then Monotone Convergence Theorem implies the existence of an optimal stopping rule δ∗t and its

corresponding value function V ∗
t .

Next, we show the uniqueness of this solution by contradiction. Let Ṽt be the value function of another

equilibrium. By induction, V (s)
t (·) ≤ Ṽt(·) and δ

(s)
t (·) ≤ δ̃t(·) for all s ≥ 1. Therefore, V ∞

t (·) ≤ Ṽt(·).

Let ∆ ≡ supr,h,e Ṽt(r, h, ℓ, e)− V ∞
t (r, h, ℓ, e) > 0. Note that for any (r, h, ℓ) in the support, Ṽt(r, h, ℓ, e)−

V ∞
t (r, h, ℓ, e) = 0 for all e : e0 − e1 ≥ δ̃t(r, h, ℓ). Then for an arbitrary (rt, ht, ℓt, ϵt):

Ṽt(rt, ht, ϵt)− V ∞
t (rt, ht, ϵt)

= max
{
u(rt, ht) + ϵt0, E

(
Ṽt+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt

)
+ ϵt1

}
− max

{
u(rt, ht) + ϵt0, E

(
V ∞
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt
)
+ ϵt1

}
≤ max

{
u(rt, ht) + ϵt0,∆+ E

(
V ∞
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt
)
+ ϵt1

}
− max

{
u(rt, ht) + ϵt0, E

(
V ∞
t+1(rt+1, ht+1, ℓt+1, ϵt+1)

∣∣rt, ht, ℓt, ϵt
)
+ ϵt1

}
< ∆.

Therefore,

sup
ϵt

Ṽt(rt, ht, ℓt, ϵt)− V ∞
t (rt, ht, ℓt, ϵt) < ∆.

By Assumptions (ii) and (iii),

sup
rt,ht,ℓt,ϵt

Ṽt(rt, ht, ℓt, ϵt)− V ∞
t (rt, ht, ℓt, ϵt) < ∆,

which is a contradiction. □
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