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ABSTRACT. We consider the estimation of dynamic binary choice models in a semiparametric

setting, in which the per-period utility functions are known up to a finite number of parameters,

but the distribution of utility shocks is left unspecified. This semiparametric setup differs from

most of the existing identification and estimation literature for dynamic discrete choice models.

To show identification we derive and exploit a new recursive representation for the unknown

quantile function of the utility shocks. Our estimators are straightforward to compute, and resem-

ble classic closed-form estimators from the literature on semiparametric regression and average

derivative estimation. Monte Carlo simulations demonstrate that our estimator performs well in

small samples.
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1. INTRODUCTION

The dynamic discrete choice (DDC) framework, pioneered by Wolpin (1984), Pakes (1986),

Rust (1987, 1994), has gradually become the workhorse model for modelling dynamic decision

processes in structural econometrics. Such models, which can be considered an extension of

McFadden’s 1978; 1980 classic random utility model to a dynamic decision setting, have been

used to model a variety of economic phenomenon ranging from labor and health economics

to industrial organization, public finance, and political economy. More recently, the DDC

framework has also been the starting point for the empirical dynamic games literature in

industrial organization.

In this paper, we consider identification and estimation of a class of semiparametric dynamic

binary choice models in which the utility indices are parametrically specified (as a linear index

of observed variables) but the shock distribution is left unspecified. Since the utility shocks

are typically interpreted as idiosyncratic and unpredictable shocks to preferences, which cause

agents’ choices to vary over time even under largely unchanging economic environments, it is

reasonable to leave their distribution unspecified. We study conditions under which the model

structure (consisting of the finite-dimensional parameters in the utility indices, and the infinite-

dimensional nonparametric shock distribution) is identified. Our identification argument is

constructive, and we propose an estimator based upon it.

The semiparametric DDC framework that we focus on in this paper is novel relative to most of

the existing literature on the identification and estimation of DDC models, which considers the

case where the utility shocks are fully (parametrically) specified. This reflects an important result

in Magnac and Thesmar (2002), who argue that in these models, the single-period utility indices

for the choices are (nonparametrically) identifiable only when the distribution of the utility

shocks is completely specified. Based on this “impossibility” result, many recent estimators for

and applications of DDC models have considered a structure in which the single-period utility

indices are left unspecified, but the utility shock distribution is fully specified (and usually

logistic, leading to the convenient multinomial logit choice probabilities).

For identification, we derive a new recursive representation for the unknown quantile function

of the utility shocks. Accordingly, we obtain a single-index representation for the conditional

2



choice probabilities in the model, which permits us to estimate the model using classic esti-

mators from the existing semiparametric binary choice model literature. Specifically, we use

Powell, Stock and Stoker’s (1989,PSS) kernel-based average-derivative estimator; we show

that, under additional mild conditions, our estimator has the same asymptotic properties as

PSS’s original estimator (which was applied to static discrete-choice models). Moreover, this

estimator is computationally quite simple because it can be expressed in closed-form. Monte

Carlo simulations demonstrate that our estimator performs well in small samples.

1.1. Literature. This paper builds upon several strands in the existing literature. The semi-

parametric binary choice literature (e.g. Manski (1975, 1985), Powell, Stock, and Stoker (1989),

Ichimura and Lee (1991), Horowitz (1992), and Lewbel (1998), among many others) is an im-

portant antecedent. There is a substantive difference, however: because these papers focus on

a static model, the shock distribution is treated as a nuisance element. As such, estimation of

these shocks is not considered.1 In contrast, the shock distribution in a dynamic model must be

estimated since it affects the beliefs that decision makers have regarding their future payoffs.

Hence, the need to estimate both the utility parameters as well as the shock distribution repre-

sents an important point of divergence between our paper and the previous semiparametric

discrete choice literature; nevertheless, as we will point out, the estimators we propose take a

very similar form to the estimators in these papers.

Srisuma and Linton (2012) pioneered the use of the theory of type 2 integral equations

for estimating dynamic discrete-choice models. We show that, besides the Bellman equation,

other structural relations in the dynamic model also take the form of type 2 integral equations.

In particular, when viewed as a function of the choice probability, the (unknown) quantile

function for the utility shocks can also be recursively characterized, which is a key step in our

identification and estimation procedure.

There is a growing literature on the identification of dynamic models in which the error distri-

bution is left unspecified. Aguirregabiria (2010) shows the joint nonparametric identification of

utilities and the shock distribution in a class of finite-horizon dynamic binary choice models.

His identification argument relies on the existence of a final period in the decision problem,

1An exception is Klein and Spady (1993), who propose a semiparametric maximum likelihood procedure which
jointly recovers the distribution of the unobservables and the slope parameters in the single index.
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and hence may not apply to infinite-horizon models as considered in this paper. Blevins (2014)

considers a very general class of dynamic models in which agents can make both discrete and

continuous choices, and the shock distribution can depend on some of the state variables. Under

exclusion restrictions, he shows the nonparametric identification of both the per-period utility

functions as well as the error distribution. Norets and Tang (2014) focus on the discrete state case,

and derive (joint) bounds on the error distribution and per-period utilities which are consistent

with an observed vector of choice probabilities. We consider the case with continuous state

variables, and discuss nonparametric identification and estimation.2 Chen (2017) considers

the identification of dynamic models, and, as we do here, obtains estimators for the model

parameters which resemble familiar estimators in the semiparametric discrete choice literature.

His approach exploits exclusion restrictions (that is, that a subset of the state variables affect

only current utility, but not agents’ beliefs about future utilities).

What distinguishes our identification approach is that we do not rely on exclusion restrictions,

but rather exploit the optimality conditions to derive a new recursive representation of the

quantile function for the unobserved shocks in terms of observed quantities. This allows us

to identify and estimate both the model parameters as well as the shock distribution and,

furthermore, propose a cosed-form estimator for these quantities.3

2. SINGLE AGENT DYNAMIC BINARY CHOICE MODEL

Following Rust (1987), we consider a single–agent infinite-horizon binary decision problem.

At each time period t, the agent observes state variables Xt ∈ Sx ⊆ Rk, and chooses a binary

decision Yt ∈ {0, 1} to maximize her expected utility. The per–period utility is given by

ut(Yt, Xt, εt) =

 W1(Xt)
ᵀθ1 + ε1t, if Yt = 1;

W0(Xt)
ᵀθ0 + ε0t, if Yt = 0.

(1)

In the above, W0(Xt) ∈ Rk0 (resp. W1(Xt) ∈ Rk1) denotes known transformations of the

state variables Xt which affect the per–period utility from choosing Yt = 0 (resp. Yt = 1),

2With a discrete state space, there can never be point identification when the error distribution has continuous
support. When the state space is continuous, however, point identification is possible under some support conditions
and a location–scale normalization on the error distribution, as we show.

3Miessi Sanches, Silva, and Srisuma (2016) and Dearing (2019) also propose closed-form estimators for DDC
models, but their estimators require the researcher to specify the error distribution. Our estimator in contrast, allows
the error distribution to be unknown and unspecified by the researcher.
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and εt ≡ (ε0t, ε1t)
ᵀ ∈ R2 are the agent’s action-specific payoff shocks, which are observed by

the agent but not by the econometrician. The structural parameters which are of interest are

θd ∈ Rkd , for d ∈ {0, 1}, along with the distribution of the payoff shocks Fε. In what follows,

let W (X) ≡ {W0(X),W1(X)} denote the full set of transformed state variables at X . For

notational simplicity, we will use the shorthand Wd for Wd(X) (d = 0, 1) and suppress the

explicit dependence upon the state variables X when possible.

This specification of the per-period utility functions in Eq. (1), as single-indices of the trans-

formed state variables W (X) encompasses a majority of the existing applications of dynamic

discrete-choice models, and thus imposes little loss in generality. The utility of action 0 is not

normalized to be zero for reasons discussed in Norets and Tang (2014). Moreover, let β ∈ (0, 1)

be the discount factor, which is assumed to be known,4 and fXt+1,εt+1|Xt,εt,Yt be the Markov

transition probability density function that depends on the state variable as well as the decision.

The agent maximizes the expected discounted sum of the per-period payoffs:

max
{yt,yt+1,...}

E


∞∑
j=0

βjut+j(yt+j , Xt+j , εt+j)|Xt, εt


We assume stationarity of the problem, which implies that the problem is invariant to the period

t. Because of this, we can omit the t subscripts and use primes (′) to denote next period values.

Let V (X, ε) be the value function given X and ε. By Bellman’s equation, the value function can

be written as

V (X, ε) = maxy∈{0,1}
{
u(y,X, ε) + βE[V (X ′, ε′)|X, ε, Y = y]

}
,

and then the agent’s optimal decision is a stationary Markov process (see e.g. Rust, 1987), given

by

Y = argmaxy∈{0,1}
{
u(y,X, ε) + βE[V (X ′, ε′)|X, ε, Y = y]

}
.

Unlike much of the existing literature, we do not assume the distribution of the utility shocks

(ε0t, ε1t) to be known, but treat their distribution as a nuisance element for the estimation of θ. In

a dynamic setting, the distribution of utility shocks also plays the role of agents’ beliefs about

4The assumption that β is known is commonplace in the applied DDC literature. See Magnac and Thesmar
(2002) and Fang and Wang (2015), among others, for discussion on the identifiability of β.
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the future evolution of state variables (i.e. they are a component in the transition probabilities

fX′,ε′|X,ε,Y ) and hence parametric assumptions on this distribution are not innocuous.

2.1. Characterization of the value function. In this subsection, we characterize the value func-

tion V (X, ε) and the expected value function given X , i.e., V e(X) ≡ E[V (X, ε)|X]. Both value

functions are useful to characterize the optimal path in our dynamic model. Let FA and FA|B

denote the CDF and the conditional CDF for generic random variables A and B, respectively.

Assumption A (Conditional Independence Assumption). The transition probability satisfies the

following condition: FX′,ε′|X,ε,Y = Fε′ × FX′|X,Y . Moreover, Fε′ = Fε.

Assumption A is strong, as it establishes that the shocks ε are fully independent of the observed

state variables X .5

Under assumption A, the value function can be written as

V (X, ε) = max
{
W ᵀ

1 θ1 + ε1 + βE[V (X ′, ε′)|X,Y = 1], W ᵀ
0 θ0 + ε0 + βE[V (X ′, ε′)|X,Y = 0]

}
.

Let η = ε0 − ε1. Then the optimal decision maximizing the value function can be written as

Y = 1{η ≤ η∗(X)}, (2)

where the cutoff η∗(X) is defined as

η∗(X) ≡W ᵀ
1 θ1 −W

ᵀ
0 θ0 + β

{
E[V (X ′, ε′)|X,Y = 1]− E[V (X ′, ε′)|X,Y = 0]

}
. (3)

The starting point for our identification and estimation procedure is a key insight from

Srisuma and Linton (2012) which relates an “ex-ante” (or expected) version of the Bellman

equation to the mathematical theory of Fredholm integral equations. Let ue(X) be the expected

per–period utility conditional on X :

ue(X) ≡ E(ε0) +W ᵀ
1 θ1 · Fη

(
η∗(X)

)
+W ᵀ

0 θ0 · [1− Fη
(
η∗(X)

)
]− E

{
η · 1[η ≤ η∗(X)]

}
, (4)

where Fη is the CDF of η. Thus, the Bellman equation can be rewritten in an “ex-ante” form as

V e(X) = ue(X) + β · Eη∗ [V e(X ′)|X] (5)

5This rules out heteroskedasticity in the unobserved shocks, which is accommodated in other papers in the DDC
literature (eg. Magnac and Thesmar (2002), Aguirregabiria (2010), Blevins (2014)).
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where the notation Eη∗ makes explicit that the expectation is taken over fη∗(X ′|X). This is the

Markovian transition density for X along the optimal path, which is endogenous as it involves

the optimal decision rule characterized by the optimal cutoffs η∗:

fη∗(X
′|X) = [1− Fη(η∗(X))]fX′|X,Y (X ′|X,Y = 0) + Fη(η

∗(X))fX′|X,Y (X ′|X,Y = 1).

Eq. (5) is a Fredholm Integral Equation of the second kind (FIE–2); the solution to the integral

solution provides an alternative characterization of the value function, as presented in the next

Lemma.

Lemma 1. (Srisuma and Linton (2012).) Suppose assumption A holds, and also suppose that, for all

s ≥ 1, E
(
‖W [s]

d ‖|X
)
<∞ a.s.,6 where the superscript ([s]) denotes the s-period ahead value. Then

V e(x) = ue(x) + β

∫
SX

R∗(x′, x;β) · ue(x′)dx′, ∀x ∈ SX , (6)

where R∗(x′, x;β) =
∑∞

s=1 β
s−1fX[s]|X;η∗(x

′|x) is the resolvent kernel generated by the FIE eq. (5).

Note that we use the superscripted X [s] to denote the s-period ahead value of X , while the

subscripted Xs denotes the value of X in period s. More succinctly, eq. (6) can be rewritten as

V e(X) = ue(X) +

∞∑
s=1

βs · Eη∗ [ue(X [s])|X]. (7)

In operator notation, eq. (7) denotes exactly the “forward integration” representation of the value

function, which is familiar from many two-step procedures for estimating dynamic discrete

choice models (see e.g. Hotz and Miller, 1993; Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky,

and Berry, 2007; Hong and Shum, 2010). In the special case when the state variables X are finite

and discrete-valued (taking k <∞ values), the Bellman equation is a system of linear equations

which can be solved for the value function (cf. Aguirregabiria and Mira, 2007; Pesendorfer

and Schmidt-Dengler, 2008) and in that case, the resolvent kernel is just the inverse matrix

(I − βFX′|X;η∗)
−1 where FX′|X;η∗ denotes the k × k transition matrix for X along the optimal

path. For notational convenience, in the remainder of this paper, we will omit the subscript of η∗

referring to the optimal dynamic path.

6This holds, for instance, when Wd(·) are bounded functions.
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For our semiparametric approach, these developments do not go far enough because they

all rely on knowledge of the distribution of utility shocks, Fη. In the following, then, we build

on these results to derive another Fredholm integral equation, which characterizes the quantile

function of the utility shocks in terms of components which can be estimated directly from

the data. This allows us to develop an estimator for dynamic models which do not require

knowledge of Fη.

2.2. Optimality Condition. To characterize agents’ optimal decisions, the key of our approach

is to solve for the cutoff value η∗ that depends on the state variables X (through the transforma-

tions W1(X) and W0(X)). By using eq. (7), along with Lemma 1, eq. (3) becomes

η∗(X) = W ᵀ
1 θ1 −W

ᵀ
0 θ0 +

∞∑
s=1

βs
{
E[ue(X [s])|X,Y = 1]− E[ue(X [s])|X,Y = 0]

}
. (8)

Moreover, let φd(X) ≡ (−1)d+1Wd +
∑∞

s=1 β
s
{
E
[
W

[s]
d 1Y [s]=d|X,Y = 1

]
−E

[
W

[s]
d 1Y [s]=d|X,Y =

0
]}

. Then, it follows from (4),

η∗(X) = φᵀ(X) · θ

−
∞∑
s=1

βs
{
E
[
η[s]1(η[s] ≤ η∗

(
X [s]

)
)
∣∣X,Y = 1

]
− E

[
η[s]1(η[s] ≤ η∗

(
X [s]

)
)
∣∣X,Y = 0

]}
, (9)

where φ(X) = (φᵀ0(X), φᵀ1(X))ᵀ and θ = (θᵀ0 , θ
ᵀ
1)ᵀ.

Eq. (9) characterizes the optimal decision rule in the single–agent infinite-horizon binary

decision problem. Alternatively, we can rewrite it using a resolvent kernel:

η∗(x) = φᵀ(x) · θ − β
∫

SX

E[η′ · 1(η′ ≤ η∗(x′)] · g(x′, x;β)dx′, ∀x ∈ SX ,

where g(x′, x;β) =
∑∞

s=1 β
s−1[fX[s]|X,Y (x′|x, 1)− fX[s]|X,Y (x′|x, 0)]. Given the structural param-

eters θ0, θ1, Fη and fX′|X,Y , in principle one can solve the threshold η∗(·).7

7However, if one were to use this equation to solve for η∗(·) via simulation or computation, g(x′, x;β) also
contains η∗(·) implicitly through the transition density fX[s]|X,Y (·|·, ·).
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3. IDENTIFICATION

Next, we develop an identification strategy that does not involve solving for the optimal

decision in the dynamic decision problem. To clarify ideas, we first provide identification of

structural parameter θ ∈ Θ ⊆ Rkθ (where kθ ≡ k0+k1) in a fully parametric model, i.e., assuming

Fη is known. Then, we establish semiparametric identification of our model by a two–step

approach: we first identify Fη up to the finite dimensional parameter θ. In the second step, we

represent the agent’s choice by a single–index representation. Therefore, the identification of θ

follows the literature.

A key feature in our semiparametric identification is that we require (at least) one argument in

the state variables Xt to have continuous variation, which is also the case in the semiparametric

identification of the single–index binary response model in the static setting. See e.g. Manski

(1975). Moreover, we show that the quantile function of Fη is identified on the support of the

agent’s choice probabilities under a location–scale normalization. This result also corresponds

to the findings in static binary response models.

Our identification of θ is constructive, as we show below that the expectation of Y given X ,

along the optimal dynamic path, is linear in θ. In turn, this leads to an OLS-like (i.e. closed form)

estimator for θ. To begin with, we introduce the following assumption.

Assumption B. Let η be continuously distributed with the full support R.

Assumption B is a weak condition widely used in semiparametric binary response models (see

e.g. Horowitz, 2009). Under assumption B, Fη is strictly increasing on its support R. Let Q be

the quantile function of Fη, i.e., Q = F−1η .

Let p(x) = P(Y = 1|X = x), which obtains directly from the data. Under assumption B,

0 < p(x) < 1 for all x ∈ SX and η∗(x) = Q(p(x)). Moreover, using the substitution η → Q(τ),

we have

E[η · 1(η ≤ Q(p)] =

∫
Q(τ)1(τ ≤ p)dτ =

∫ p

0
Q(τ)dτ.

From the above discussion, it is straightforward that we obtain the following lemma.
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Lemma 2. Suppose assumptions A and B hold. Then we have

Q(p(X)) +

∞∑
s=1

βs

{
E
[ ∫ p(X[s])

0
Q(τ)dτ

∣∣X,Y = 1
]
− E

[ ∫ p(X[s])

0
Q(τ)dτ

∣∣X,Y = 0
]}

= φᵀ(X) · θ. (10)

Eq. (10) is the key restriction for our identification and estimation analysis, where the number of

restrictions equals to the size of the support SX .

When Q is given, then everything in (10) is known except for θ. If, in addition, the matrix

E[φ(X)φᵀ(X)] is invertible, then θ can be estimated using nonlinear least-squares on eq. (10).

This approach is related to Pesendorfer and Schmidt-Dengler (2008).8

3.1. Semiparametric Identification. Without making any distributional assumptions on η, we

now discuss the identification of θ as well as Q. Intuitively, the number of restrictions imposed

by (10) depends on the richness of the support SX . For identification of Q (up to θ), we only

exploit variation in the choice probabilities p(X).

For notational simplicity, we assume the choice probability p(X) is continuously distributed

on a connected interval.9

Assumption C. (i) Let p(X) be continuously distributed; (ii) let the support of p(X) be a connected

interval, i.e., [p, p] ⊆ [0, 1].

This assumption requires the state variables X to contain some continuous components. Letting

XD (resp. XC) denote the discrete (resp. continuous) components of X , a more primitive

statement of Assumption C would be that, for fixed values of the discrete components (say)

XD = xd, the support of p(XC , xd) is a closed interval in [0, 1]. As is well–known, the continuity

of covariates is crucial for the semiparametric identification in the static binary response model;

this is still the case in our dynamic binary decision model.

8The full rank of E[φ(X)φᵀ(X)] requires that if the transformed state variables W0(X) and W1(X) contain a
common component Wc(X), then E[Wc(X

′)|X,Y = 0] 6= E[Wc(X
′)|X,Y = 1]. This rules out the case that variables

without any dynamic transition (e.g. the constant) are included in both transformed state variables. Moreover, we
also require that the discount rate β 6= 0, otherwise φ0(X) =W0(X) and φ1(X) =W1(X), which clearly invalidates
the rank condition when a common term Wc(X) is present.

9This interval–support restriction can be relaxed at expositional expense. For instance, suppose Sp(X) is a
non–degenerate compact subset of [0, 1]. All of our identification arguments below still hold by replacing the integral
region [p, p] with Sp(X).
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In contrast, when p(X) only has discrete variation (which typically arises when the state

variables X themselves have only discrete variation), Norets and Tang (2014) show that the

distribution of η is partially identified.

For each p ∈ [p, p], let z(p) = E[φ(X)|p(X) = p]. We now take the conditional expectation

given p(X) = p on both sides of eq. (10). By the law of iterated expectation, we have

Q(p)+

∞∑
s=1

βs

{
E
[ ∫ p(X[s])

0
Q(τ)dτ

∣∣p(X) = p, Y = 1
]
− E

[ ∫ p(X[s])

0
Q(τ)dτ

∣∣p(X) = p, Y = 0
]}

= z(p)ᵀ · θ.

The above discussion is summarized by the following lemma.

Lemma 3. Suppose assumptions A to C hold. Then we have

Q(p) + β

∫ p

p

∫ p′

p
Q(τ)dτ · π(p′, p;β)dp′ = z(p)ᵀ · θ, ∀p ∈ [p, p], (11)

where π(p′, p;β) =
∑∞

s=1 β
s−1[fp(X[s])|p(X),Y (p′|p, 1)− fp(X[s])|p(X),Y (p′|p, 0)].

Note that Lemma 3 uses the fact
∫ p
p

∫ p′
0 Q(τ)dτ · π(p′, p;β)dp′ =

∫ p
p

∫ p′
p Q(τ)dτ · π(p′, p;β)dp′. By

definition, π(p′, p;β) is the difference of the discounted aggregate densities of the future choice

probabilities, conditional on the current choice probability and (exogenously given) action,

which can be obtained directly from the data.

Eq. (11) is also an FIE–2. To see this, let Π(p′, p;β) ≡
∑∞

s=1 β
s−1[Fp(X[s])|p(X),Y (p′|p, 1) −

Fp(X[s])|p(X),Y (p′|p, 0)]. Then, the second term of eq. (11) can be rewritten as∫ p

p

∫ p′

0
Q(τ)dτ · π(p′, p;β)dp′ =

∫ 1

0
Q(τ) ·

∫ p

p
1(τ ≤ p′) · π(p′, p;β)dp′dτ

= −
∫ 1

0
Q(τ) ·

[ ∫ p

p
1(p′ < τ)π(p′, p;β)dp′

]
dτ

= −
∫ p

p
Q(τ) ·Π(τ, p;β)dτ,
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where the second step comes from the fact
∫ p
p π(p′, p;β)dp′ = 0 and the last step is because

Π(p′, p, β) = 0 for all p′ 6∈ [p, p]. Hence, we obtain the following FIE–2:

Q(p)− β
∫ p

p
Q(τ) ·Π(τ, p;β)dτ = z(p)ᵀ · θ, ∀p ∈ [p, p]. (12)

By solving this equation, we can identify Q(·) on [p, p] up to the finite dimensional parameter θ.

Assumption D. Let β2 ·
∫ p
p

∫ p
p Π2(p′, p;β)dp′dp < 1.

Assumption D ensures that the mapping in Eq. (12) is a contraction, so that the solution is

unique. This assumption is not a model restriction, but an identification condition, involving

both structural primitives as well as variations of observed state variables. Since the discount

rate β is taken as given in our analysis, this condition is essentially an implicit restriction that β

be sufficiently far from 1.10

Lemma 4. Suppose assumptions A to D hold. Then, Q is point identified on [p, p] up to the finite

dimensional parameter θ:

Q(p) =

{
z(p)− β

∫ p

p
R(p′, p;β) · z(p′)dp′

}ᵀ
· θ, ∀ p ∈ [p, p] (13)

whereR(p′, p;β) =
∑∞

s=1(−β)s−1Ks(p
′, p;β), in whichKs(p

′, p;β) =
∫ 1
0 Ks−1(p

′, p̃;β)·Π(p̃, p;β)dp̃

and K1(p
′, p;β) = Π(p′, p;β).

The solution (13) is proportional to θ, which is due to the linearity of the FIE system. Therefore,

(13) can also be represented by a sequence of “basis” solutions. To see this, let z`(p) be the `–th

argument of z(p). For ` = 1, · · · , kθ, let b∗` (·) be the (unique) solution to the following equation

b`(p) + β

∫ p

p

∫ p′

p
b`(τ)dτ · π(p′, p;β)dp′ = z`(p). (14)

By a similar argument to Lemma 4, we have

b∗` (p) = z`(p)− β
∫ p

p
R(p′, p;β) · z`(p′)dp′, ∀ p ∈ [p, p]

10In our computations, we have never run into convergence problems even for values of β = 0.99.
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as the unique solution to (14). Let B(·) ≡ (b∗1(·), · · · , b∗kθ(·))
ᵀ be the sequence of solutions

supported on [p, p]. Thus, the solution in eq. (13) can be written as

Q(p) = B(p)ᵀ · θ, ∀ p ∈ [p, p]. (15)

By Lemmas 1 to 4, we obtain a single–index representation of the semiparametric dynamic

decision model, which is stated in the following theorem.

Theorem 1. Suppose assumptions A to D hold. Then, the agent’s dynamic decision can be represented

by a static single–index model:

P(Y = 1|X) = Fη
(
m(X)ᵀ · θ

)
where

m(X) = φ(X)−
∞∑
s=1

βs

{
E
[ ∫ p(X[s])

p
B(τ)dτ

∣∣X,Y = 1
]
− E

[ ∫ p(X[s])

p
B(τ)dτ

∣∣X,Y = 0
]}

,

or alternatively, m(X) = B(p(X)).

Because P(Y = 1|X) = Fη
(
Q(p(X))

)
, Theorem 1 obtains by combining eqs. (10) and (15).

Given the identification of B(·) on the support [p, p], m(·) is then constructively identified on

SX . Therefore, the identification of θ simply follows the single-index model literature, see e.g.

Manski (1975, 1985).

It is worthing noting that any constant term in Wd remains a constant in the transformed

linear–index m(X). In other words, suppose, w.l.o.g., W11 = 1. Then the corresponding

argument in m(X) also equals 1. To see this, the first argument in φ(X) is given by

1 +

∞∑
s=1

βs
{
E
[
p(X [s])|X,Y = 1

]
− E

[
p(X [s])|X,Y = 0

]}
,

which thereafter implies

z1(p) = 1 +

∞∑
s=1

βs
{
E
[
p(X [s])|p(X) = p, Y = 1

]
− E

[
p(X [s])|p(X) = p, Y = 0

]}
.

Using (14), one can verify that the solution is: b∗1(·) = 1. Then, we plug this solution into the

the first element of m(X), which gives us m1(X) = 1. By a similar argument, a constant in W0

implies the corresponding term in m(X) equals −1.
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By a similar argument as in the static binary response model literature, the index parameter θ

is identified up to location and scale in the semiparametric setting. For notational simplicity,

hereafter we assume the state vector X does not include a constant term in the semiparametric

setting.11 Moreover, we will introduce a scale normalization on θ which is also standard in the

literature.

Assumption E. We denote the first argument of m(X) by m1(X) and the rest by m−1(X). Moreover,

let m1(X) be continuously distributed on an interval given m−1(X) which is a vector of either discrete

and/or continuous random variables. Let fm1(X)|m−1(X) be the conditional pdf. Moreover, the matrix

E[m(X)m(X)ᵀ] is invertible.

In Assumption E, the first half condition requires at least one argument in X1 to be continuously

distributed conditional on others; this rules out cases where, e.g. all the state variables are

functions of a single variable X1 (as in (Rust, 1987), where mileage and mileage-squared enter

as state variables). The second half of Assumption E is a testable rank condition. Assumption E

is a strong assumption, but almost indispensable in the semiparametric single index model

literature; See Horowitz (2009).

Assumption F. Let ‖θ‖ = 1.

Assumption F is a scale normalization, which has also been used in PSS. We implicitly normalize

our location term by 0, since neither W0 nor W1 contains a constant term.

Theorem 2. Suppose assumptions A to F hold. Then, the structural parameter θ is point identified.

Furthermore, Fη is identified by Fη(t) = P(Y = 1|m(X)ᵀθ = t) for any t ∈ Sm(X)ᵀθ.

Our identification approach for the semiparametric binary dynamic discrete choice model

shares many similarities with identification strategies for static semiparametric binary response

models, which we briefly discuss here. For identification, we rely explicitly on variation in

the choice probabilities p(X). When X is multi-dimensional, then there can exist open sets

X̃ ∈ X such that the choice probabilities are the same for all x ∈ X̃ : p(x1) = p(x2) for all

x1, x2 ∈ X̃ . Thus, by the threshold-crossing nature of optimal decisions, agents with x ∈ X̃ have

11In our semiparametric setting, any constant term in the utility function will be absorbed by the error term since
the distribution of the latter is left unspecified.
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the same cutoff η∗(x) and, under the index assumption on the per-period utilities, we derived

that η∗(x) = m(x)′θ, for a vector of functionsm(x) which can be estimated directly from the data.

Hence, θ is identified from the equality restrictions m(x1)
′θ = m(x2)

′θ for all x1, x2 ∈ X̃ , which

do not involve the unknown distribution function of η. (The normalization ||θ|| = 1 eliminates

the trivial solution θ = 0 to this estimating equation.)

For comparison, Manski’s (1988) identification argument for semiparametric static binary

response model also relies on a similar argument. Agents with x ∈ X̃ have the same choice

probability p(x) and hence the same cutoff, which in the static case (given the index assumption)

is just equal to x′θ. Then identification derives from the estimating equation x′1θ = x′2θ for all

x1, x2 ∈ X̃ .

4. SEMIPARAMETRIC ESTIMATION

In this section, we describe and motivate the semiparametric estimation of our structural

model. As is commonly encoutered in the empirical literature on dynamic models, we assume

the researcher has panel data on choices and states {(Yit, Xᵀit))ᵀ : i = 1, · · · , N ; t = 1, · · · , T}

where i denotes agents and t denotes periods. For illustration purpose, let T = 2. Since the

underlying dynamic optimization model implies that (Yit, Xit) evolve as a stationary (time-

invariant) first-order Markov process, we can identify the conditional choice probabilities p(Y |X)

and state transitions fX′|X,Y directly from the data, as detailed below.12

Throughout, we use K and h to denote a Parzen–Rosenblatt kernel and a bandwidth, respec-

tively. Moreover, we assume all variables in X are continuously distributed for expositional

convenience.13 First, we nonparametrically estimate the choice probabilities p, (conditional)

density functions fX′|X and fX′|X,Y . This estimates will be used for constructing m(·) later. Let

fX be the density function of X . Throughout, We assume (i) fX has a convex and compact

support, denoted by SX ; (ii) infx∈SX
fX ≥ f for some f > 0; (iii) fX , p and fX′|X,Y are ι > 2

12A similar situation arises if the researcher hahs access to a single long time series with T →∞, given minor
adjustments to the assumptions.

13A mixture of continuous and discrete regressors can be accommodated at the expense of notation.
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times differentiable on SX with bounded ι-partial derivatives. Let

p̂(x) =

∑N
i=1 Yi1 ×K

(
Xi1−x
hX

)
∑N

i=1K
(
Xi1−x
hX

) ,

where we choose an undersmoothing bandwidth, i.e., hX = 1.06 × σ̂X × N−
1

2ι−ιε ; σ̂X is the

sample standard deviation of Xi1, ιε(ιε > 0) is an arbitrary small positive number, satisfying

ι > k+ 2 + 0.5ιε.14 The kernel function K is of order ι. By using a higher order kernel, we ensure

the estimation bias of p̂(·) is of order o(N−1/2), and that the variance of the estimator becomes

the leading term in its asymptotic performance. The restriction on the choice of bandwidth (i.e.

underersmoothing) ensures that the root mean square error in the estimation of p(·) diminishes

at rate lnN ×N−
ι−0.5ιε−0.5k

2ι−ιε (faster than N−1/4). See e.g. Hansen (1995) for more detailed results.

In addition, the support [p, p] of p(X) can be estimated by [mini≤N p̂(Xi1),maxi≤N p̂(Xi1)]. For

notation simplicity, let p̂i1 ≡ p̂(Xi1).

Moreover, we estimate fX′|X and fX′|X,Y respectively by

f̂X′|X(x′|x) =

∑N
i=1K

(
Xi2−x′
hX

)
K
(
Xi1−x
hX

)
∑N

i=1K
(
Xi1−x
hX

) ,

f̂X′|X,Y (x′|x, d) =

∑N
i=1K

(
Xi2−x′
hXd

)
K
(
Xi1−x
hXd

)
1(Yi1 = d)∑N

i=1K
(
Xi1−x
hXd

)
1(Yi1 = d)

, d = 0, 1,

where hXd = 1.06× σ̂Xd ×N
− 1

2ι−ιε
d ; σ̂Xd is the sample standard deviation of Xi1 given Yit = d,

and Nd =
∑N

i=1 1(Yi1 = d). The asymptotic properties of f̂X′|X(·|·) and f̂X′|X,Y (·|·, d) are similar

to p̂.

Then we estimate the following functionals of fX′|X and fX′|X,Y :

ϕ(x′|x) ≡
∞∑
s=1

βs−1fX[s]|X(x′|x), ∀x′, x;

δ(x′|x) ≡
∞∑
s=1

βs−1[fX[s]|X,Y (x′|x, 1)− fX[s]|X,Y (x′|x, 0)], ∀x′, x.

14Note that in estimating p̂(x), we do not use observations {Yi2 : i ≤ N}; this is for convenience, as it is possible
to include this additional information to our estimation procedure at the expense of notation and exposition.
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By definition, ϕ is the “discounted sum” of fX[s]|X , which leads to an FIE-2 system:

ϕ(x′|x) = fX′|X(x′|x) + β

∫
ϕ(x′|x̃)fX′|X(x̃|x)dx̃, ∀x′, x ∈ SX .

This suggests a plug-in estimator: Let ϕ̂ solve

ϕ̂(x′|x) = f̂X′|X(x′|x) + β

∫
ϕ̂(x′|x̃)f̂X′|X(x̃|x)dx̃, ∀x′, x.

As standard in the FIE-2 literature, a numerical solution/estimator obtains by using the iteration

method: Let ϕ̂[0] = f̂X′|X . Then we set

ϕ̂[1](x′|x) = f̂X′|X(x′|x) + β

∫
ϕ̂[0](x′|x̃)fX′|X(x̃|x)dx̃, ∀x, x′.

Repeat such an iteration until it converges, then we obtain ϕ̂ = ϕ̂[∞].

By a similar argument, we have

δ(x′|x) = fX′|X,Y (x′|x, 1)−fX′|X,Y (x′|x, 0)+β

∫
ϕ(x′|x̃)

[
fX′|X,Y (x̃|x, 1)−fX′|XfX′|X,Y ,Y (x̃|x, 0)

]
dx̃,

which is estimated by

δ̂(x′|x) = f̂X′|X,Y (x′|x, 1)− f̂X′|X,Y (x′|x, 0) + β

∫
ϕ̂(x′|x̃)

[
f̂X′|X,Y (x̃|x, 1)− f̂X′|X,Y (x̃|x, 0)

]
dx̃.

Note that both ϕ̂ and δ̂ are functionals of f̂X′|X and f̂X′|X,Y , Hadamard directionally differ-

entiable. By the functional delta method, the asymptotic behaviors of all these second stage

estimators can be derived from f̂X′|X − fX′|X and f̂X′|X,Y − fX′|X,Y .

Next, we estimate φd(·) and m`(·). Note that

φd(x) = (−1)d+1Wd(x) + β

∫
E(Wd1Y=d|X = x′)× δ(x′|x)dx′,

in which E(Wd1Y=d|X = x′) = Wd(x
′)pd(x′)[1− p(x′)]1−d. Therefore, let

φ̂d(x) = (−1)d+1Wd(x) + β

∫
Wd(x

′)p̂d(x′)[1− p̂(x′)]1−d × δ̂(x′, |x)dx′
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Again, by the functional delta method, the asymptotic behavior of φ̂d − φd depends on p̂ − p,

f̂X′|X,Y − f̂X′|X,Y and ϕ̂− ϕ. To estimate b∗` , note that (12) implies

b∗` (p)− β
∫ p

p
b∗` (τ)×Π(τ, p;β)dτ = z`(p), ∀p ∈ [p, p],

in which Π and z` are estimated by

Π̂(τ, p;β) =

∑N
i=1

∫
1[p̂(x′) < τ ]δ̂(x′|Xi1)dx

′ ×Kp(
p̂(Xi1)−p

hp
)∑N

i=1Kp(
p̂(Xi1)−p

hp
)

;

ẑ`(p) =

∑N
i=1 φ̂`(Xi1)Kp(

p̂(Xi1)−p
hp

)∑N
i=1Kp(

p̂(Xi1)−p
hp

)
.

where hp = 1.06× σ̂p ×N−
1

2ι−ιε is an underersmoothing bandwidth, σ̂p is the sample standard

deviation of p(Xi1), and the order of the kernel function Kp is ι. We can apply e.g. Kristensen

(2010), Mammen, Rothe, Schienle, et al. (2012) and Mammen, Rothe, and Schienle (2016) to

derive the asymptotic performance of the above estimators.15

Moreover, we estimate b∗` (·) by solving

b̂∗` (p)− β
∫ p

p
b̂∗` (τ)× Π̂(τ, p;β)dτ = ẑ`(p), ∀p ∈ [p+ hp, p− hp].

Again, we apply an iteration algorithm to this FIE-2 system.

We are now ready to construct the single–index variables m(Xi1): For ` = 1, · · · , kθ, let

m̂`(Xi1) = b̂∗`,−i(p̂−i(Xi1)), i = 1, · · · , N,

where b̂∗`,−i and p̂−i are the so-called leave-one-out estimators, defined the same as b̂∗` and p̂

except for excluding observation i for their expressions.

Finally, we apply PSS to estimate θ (up to scale), which takes a closed-form expression and

does not involve a trimming mechanism.16 Specifically, we define

θ̂ = − 2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+1
θ

×∇Kθ

(
m̂(Xi1)− m̂(Xj1)

hθ

)
× Yj1

]
. (16)

15In particular, Mammen, Rothe, Schienle, et al. (2012) uses empirical process theory to provide a stochastic
expansion that characterizes the influence of the generator regressor in the kernel function for asymptotic analysis.

16One could also use alternative methods e.g. Klein and Spady (1993) and Ichimura (1993) to estimate θ.
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Following the standard kernel regression literature, we can show θ̂ is consistent given that

supx∈SX
|m̂(x)−m(x)| = op(hθ), hθ → 0 and Nhkθ+1

θ →∞ as N →∞.

With these considerations in place, we next establish
√
N–consistency of θ̂. Following PSS,

we need to choose a higher-order kernel Kθ and an undersmoothing bandwidth hθ. However,

it is more delicate in our setting because of the generated regressor m̂(X1) contained in the

kernel function of our estimator (16). Due to the first–stage estimation error, we must make the

following additional assumptions on the convergence of m̂(X1) to m(X1):

Assumption G. (i) E‖m̂(X)−m(X)‖2 = o(N−
1
2h3θ);

(ii) E‖E[m̂(X)|X]−m(X)‖ = o(N−
1
2h2θ).

Assumption G encompasses high–level conditions that could be further established under

primitive conditions. In particular, Assumption G(i) requires m̂(·) to converge to m(·) faster

than N−
1
4 . By Assumption G(ii), the bias term in the estimation of m uniformly converges to

zero faster than N−
1
2 . Hence, we need to use a higher order kernel in the estimation of m(·).

Assumption G is standard in the literature for the regular convergence of finite–dimensional

parameters in semiparametric models (e.g. Ai and Chen, 2003), except for the polynomial terms

of hθ in the o(·) or op(·) which arises due to the average derivate estimator in the second stage.

Let fm be the density function of m(X).

Assumption H. (i) The support of fm is convex subset of Rdθ with nonempty interior; (ii) The density

function fm is continuous in the components, so that fm(m) = 0 for all m ∈ Rdθ on the boundary of

its support; (iii) fm(·) and P(Y = 1|m(X) = ·) are continuously differentiable on its support. (iv) The

components of the random vector ∂P(Y |m(X))
∂m and random matrix ∂fm

∂m have finite second moments. In

addition, ∂fm∂m and ∂P(Y |m(X))fm
∂m satisfy the Lipschitz conditions in PSS; (v) Let k∗ = kθ+3+1(kθ is even)

2 .

All partial derivatives of fm of order k∗ + 1 exist; and the expectation E
(
Y ∂kfm
∂m`1 ···∂m`k

)
exists for all

k ≤ k∗ + 1; (vi) Let η be continuously distributed with density function fη.

Assumption I. hθ = N
− 1
γ where kθ + 2 < γ < kθ + 3 + 1(kθ is even).

Assumption J. The support of the kernel function Kθ is a convex subset of Rkθ with nonempty interior,

with the origin as an interior point; Kθ is a bounded differentiable function that obeys:
∫
Kθ(u)du = 1,
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Kθ(u) = 0 for all u belongs to the boundary of its support, Kθ(u) = Kθ(−u) and∫
u`11 · · ·u

`ρ′
kθ
Kθ(u)du = 0, for `1 + · · ·+ `ρ′ <

kθ + 3 + 1(kθ is even )

2
, and∫

u`11 · · ·u
`ρ′
kθ
Kθ(u)du 6= 0, for `1 + · · ·+ `ρ′ =

kθ + 3 + 1(kθ is even )

2
.

where u` is the `–th argument of u. Kθ is three times differentiable and
∫
‖u‖ × ‖∇3K(u)‖du < ∞.

Moreover, all moments of Kθ of order k∗ exist.

Assumptions H to J are regularity conditions introduced by PSS. Specifically, Assumption H

represents the regularity conditions, e.g., on the smoothness of the underlying structural com-

ponents of our model. Assumptions I and J are made for the choice of bandwidth and kernel,

respectively, to control the bias term in the estimation of θ and the issue due to the generated

regressor m̂. The restriction on the bandwidth Assumption I implies that hθ is not an optimal

bandwidth sequence (rather it is undersmoothed) such that the bias of estimating θ goes to zero

faster than
√
N .

Given these assumptions, we can show the following result (the proof is in the appendix):

Theorem 3. Suppose assumptions G to J hold. Then, for some scalar λ > 0 specified below,
√
N(θ̂−λ ·θ)

has a limiting multivariate normal distribution defined in Powell, Stock, and Stoker (1989, Theorem 3.1):

√
N(θ̂ − λ · θ) d→ N(0,Σ)

where Σ ≡ 4 E(ζζᵀ) − 4λ2θθᵀ, ζ = fm(m(X1))fη(η
∗(X1))θ −

[
Y1 − Fη(η∗(X1))

]
f ′m(m(X1)) and

λ = E
[
fm
(
m(X1)

)
fη(m(X1)

ᵀθ)
]
.

In the above theorem, recall P(Y1 = 1|X1) = Fη(η
∗(X1)) and η∗(X1) = m(X1)

ᵀθ by Theorem 1.

Our estimator θ̂ (as defined in Eq. (16)) has not imposed the scale restriction in Assumption F;

thus λ ∈ R in the above theorem denotes the probability limit of ‖θ̂‖; i.e., ‖θ̂‖ = λ+Op(N
− 1

2 ).

Therefore, by rescaling our estimator θ̂ as θ̂∗ = θ̂/‖θ̂‖, we obtain that

√
N(θ̂∗ − θ) d→ N(0,Σ/λ2).

Given the asymptotic normality established in this section, bootstrap inference is valid for

empirical applications.
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Given θ̂∗, a nonparametric estimator of Q(·) directly follows from Eq. (13). Namely, let

Q̂(p) = ẑᵀ(p)× θ̂∗, ∀ p ∈ [p+ hp, p− hp].

Because of the
√
N–consistency of θ̂∗, the estimator Q̂(p) is asymptotically equivalent to ẑᵀ(p)×θ,

which converges at a nonparametric rate.17

4.1. Monte Carlo. The focus of our Monte Carlo is on the semiparametric estimation. In our

experiments, let ut(0, Xt, εt) = θ0 + ε0t and ut(1, Xt, εt) = X1tθ1 + X2tθ2 + ε1t, where X1t, X2t

are random variables and θ0, θ1, θ2 ∈ R. Moreover, we set the conditional distribution of Xt+1

given Xt and Yt as follows: for k = 1, 2

Xk,t+1 =

 Xkt + νkt, if Yt = 0

νkt if Yt = 1
,

where ν1t and ν2t conform to a Lognormal (0,1) and a Lognormal (0,4) respectively, and ν1t⊥ν2t.

Our assumption on the distribution of εdt will vary across the specifications, as detailed below.

We set β = 0.9 and set the parameter values as follows: θ0 = 6, θ1 = 0.5 and θ2 = 0.5.

Because we cannot estimate the constant θ0 in the semiparametric framework, we treat θ0 as

a nuisance parameter. Let θ = (θ1, θ2)
ᵀ. θ is only identified up to scale in the semiparametric

setting. To compare the performance of the semiparametric estimators, we assume the scale of θ

is known, i.e., ‖θ‖ =
√

0.5, rather than imposing a different normalization, as assumption F.

Based on this setup, Table 1 shows a set of Monte Carlo estimates which examines the

performance of our estimator, denoted as BSX, under three specifications. In Specification 1

unobservables are distributed as Type I extreme value, with zero mean and unit variance. This

corresponds to the typical assumption made in Rust (1987) and in many other applications of

dynamic discrete-choice models. Specification 2 uses data generated from a model in which

unobservables are drawn from an equally-weighted two-component mixture of T1EV distri-

butions, with the first (second) component having a mean of 4 (-4) and standard deviation of

2 (3). Specification 3 is similar, but with mean and variance of (4,2) and (-3,2) across the two

components. In these last two specifications, the error distribution is bimodal, and parametric

17The asymptotic properties of ẑᵀ(p) can be established by following Guerre, Perrigne, and Vuong (2000), who
use nonparametrically estimated pseudo private values to construct a kernel estimator for the density function of
bidders’ private values in an independent private value auction model.
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TABLE 1. Monte Carlo Results

Specification 1: Specification 2: Specification 3:
Logit Bimodal mixture Bimodal mixture

Sample size θ1 θ2 θ1 θ2 θ1 θ2

True Value: 0.5 0.5 0.5 0.5 0.5 0.5

N=1000 0.487 0.493 0.478 0.460 0.492 0.462
(0.098 ) (0.102 ) (0.164 ) (0.182 ) (0.144 ) (0.155 )

N=2000 0.490 0.498 0.488 0.491 0.487 0.492
(0.078 ) (0.058 ) (0.098 ) (0.076 ) (0.092 ) (0.074 )

N=4000 0.495 0.498 0.498 0.491 0.497 0.492
(0.058 ) (0.058 ) (0.073 ) (0.076 ) (0.073 ) (0.074 )

Logit-MLE

N=4000 0.502 0.502 0.215 0.193 0.226 0.188
(0.031 ) (0.029 ) (0.02 ) (0.013 ) (0.018 ) (0.01 )

This table presents Monte Carlo results for our BSX estimator across different specifications and
sample sizes. Specification 1 uses data generated where unobservables are distributed as Type-I
extreme value with mean 0 and variance 1. Specifications 2 and 3 use data generated from an
equally-weighted mixture of two different T1EV distributions. Each row offers estimates for
different sample sizes, except the last row which implements a nested fixed-point MLE estimator
under a unimodal logit assumption on unobservables. For each sample size, reported estimates
and standard deviations (in parentheses) are computed as the mean across 150 simulation draws.

estimation using either the full-solution or CCP-based methods would be challenging, as the

model choice probabilities no longer have a closed-form.

Table 1 highlights that our estimator is able to identify and estimate θ (up to scale) regardless

of the underlying distribution of unobservables. Even at smaller sample sizes (N = 1000), the

estimator performs well, with no marked deterioration relative to larger sample sizes. In the last

row, we contrast our results with an MLE estimator under the assumption that unobservables are

T1EV (corresponding to Rust’s (1987) nested fixed-point estimator). When the model is correctly

specified as in Specification 1, the MLE performs well. However when we generate data using

the non-logit mixture distributions, as in Specifications 2 and 3, the MLE is misspecified, and we

see that this misspecification introduces bias. In contrast to our BSX estimator, which continues
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to recover parameters up to scale, the MLE performs poorly, attributing parameter values which

are in neither absolute nor relative terms close to the true values.18

Another important benefit of our approach is the short computational time: a single estimation

procedure takes about 0.9 seconds when N = 1000, and grows to about 13 seconds as the sample

size increases to N = 4000. By contrast the MLE estimation of takes close to 30 minutes, as the

choice probabilities must be simulated for each trial value of the parameters.

5. CONCLUSIONS

In this paper we consider the estimation of dynamic binary discrete choice models in a

semiparametric setting, in which the per-period utility functions are parameterized as single-

index functions, but the distribution of the utility shocks is left unspecified and treated as

nuisance components of the model. This setup differs from most of the existing work on

estimation and identification of dynamic discrete choice models. For identification, we derive

a new recursive representation for the unknown quantile function of the utility shocks; our

argument requires no additional exclusion restrictions beyond the conditional independence

conditions assumed in the typical parametric dynamic-discrete choice literature (e.g. Rust

(1987, 1994)). Accordingly, we obtain a single-index representation for the conditional choice

probabilities in the model, which permits us to estimate the model using classic estimators from

the existing semiparametric binary choice literature.

In particular, we use Powell, Stock and Stoker’s (1989) kernel-based estimator to estimate the

dynamic discrete choice model. We show that the estimator has the same asymptotic properties

as PSS’s original estimator (for static discrete-choice models), under mild conditions. Signifi-

cantly, the computational procedure is quite simple, because the estimator for the parameters

can be expressed in closed-form. Monte Carlo simulations show that the estimator works well

even in moderately-sized samples.

In this paper, we focus on the dynamic binary choice model. An extension to multinomial

(≥ 3) choice appears challenging, because our procedure relies strongly on a threshold-crossing

property of the optimal decision rule (eqs. (2)-(3)). This is natural for binary choice, but not

obviously generalizable to multinomial choice settings.

18Note as well that the MLE procedures estimates the constant parameter θ0, which we did not report in Table 1.
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In current work, we are using our procedure to estimate a dynamic labor supply model for

taxicab drivers, using a large sample of shifts of New York City taxicabs (Buchholz, Shum,

and Xu (2018)). Since our estimator works for any dynamic binary choice problem, it may

be fruitfully applied to dynamic entry games which have been estimated in the empirical IO

literature (eg. Ryan (2012), Collard-Wexler (2013)), as well as models of technology or new

product adoption (eg. Nair (2007), Ryan and Tucker (2012)). We will explore these possibilities

in future work.
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APPENDIX A. PROOFS

A.1. Proof of Lemma 1.

Proof. First, the resolvent kernel R∗ is well–defined. This is because βs−1fX[s]|X(x′|x)→ 0 as s→ +∞.

Under the assumptions on W [
ds] in the statement of the Lemma, the solution V e(x) is also well defined.

Because it is straightforward to verify that the solution in the lemma solves eq. (5), Hence, it suffices to

show the uniqueness of the solution. Eq. (5) can be rewritten as

V e(x) = ue(x) + β ·
∫
V e(x′) · fX′|X(x′|x)dx′, ∀ x ∈ SX ,

which is an FIE–2. Then, we apply the method of Successive Approximation (see e.g. Zemyan, 2012).

Specifically, let V ∗(·) be an alternative solution to (5). Then, we have

V ∗(x) = ue(x) + β

∫
SX

V ∗(x′) · fX′|X(x′|x)dx′.

Let ν(x) = V e(x)− V ∗(x). Then ν(x) satisfies the following equation:

ν(x) = β

∫
SX

ν(x′) · fX′|X(x′|x)dx′.

It suffices to show that ν(·) has the unique solution: ν(x) = 0. To see this, we substitute the left–hand side

as an expression of ν into the integrand:

ν(x) = β2

∫
SX

∫
SX

ν(x̃) · fX′|X(x̃|x′)dx̃ · fX′|X(x′|x)dx′ = β2

∫
SX

ν(x′) · fX[2]|X(x′|x)dx′.

Repeating this process, then we have: for all t ≥ 1

ν(x) = βt
∫

SX

ν(x′) · fX[t]|X(x′|x)dx′.

Along the optimal stationary Markov path, fX[t]|X(x′|x) converges to fX(x′) as t → ∞. Hence, the

right–hand side converges to zero as t goes to infinity. It follows that ν(x) = 0 for all x ∈ SX . �

A.2. Proof of Lemma 4.

Proof. Eq. (12) is an FIE–2. By Assumption D and Theorem of Successive Approximation (see e.g. Zemyan,

2012, Theorem 2.3.1), it has a unique solution (13). �

A.3. Proof of Theorem 3. The estimator is defined in (16). For the consistency of θ̂, we need hθ → 0,

Nhkθ+1
θ → ∞ and E|m̂(X11) −m(X11)| = o(hθ) as N → ∞. The last condition ensures the estimation

error in m̂ is negligible.
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We now establish the limiting distribution of θ̂. Let θ̃ be the infeasible estimator

θ̃ = − 2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+1
θ

×∇Kθ

(
m(Xi1)−m(Xj1)

hθ

)
× Yj1

]
.

The asymptotic analysis for θ̃ was done in Powell, Stock, and Stoker (1989). They show that the variance

term in θ̃ has the order N−
1
2 if Nhkθ+2

θ → ∞, while the bias term has the order hpθ . Therefore, if

N
1
2hpθ → 0, then the bias term disappear faster than N−

1
2 . The leading term left is the variance term and

the θ̃ converges at the rate N−
1
2 . Our arguments piggybacks off of this argument, as we will show here

that N
1
2 (θ̂ − θ) is identical to N

1
2 (θ̃ − θ) by a negligible factor; that is, our estimator and the infeasible

estimator have the same limiting distribution (corresponding to that derived in Powell, Stock, and Stoker

(1989)).

By Taylor expansion of order two with integral remainder, we have

θ̂ = θ̃ − 2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+2
θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)
× Yj1 ×

(
m̂(Xi1)−m(Xi1)

)]

+
2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+2
θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)
× Yj1 ×

(
m̂(Xj1)−m(Xj1)

)]

+Op(h
−3
θ × E‖m̂(X)−m(X)‖2) ≡ θ̃ + A1 + A2 + B (17)

In the above derivation, the order for the remainder term B comes from the expression of E|B|. We will

show that A1 + A2 + B are all op(N−
1
2 ) implying N

1
2 (θ̂ − θ̃) is negligible. First, by Assumption G(i),

B = op(N
− 1

2 ).

Next we show A1 and A2 = op(N
− 1

2 ). For simplicity, we only provide an argument for A1 (that for A2

is analogous).

Define

Ã1 ≡ −
2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+2
θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)
Yj1 ×

[
E[m̂(Xi1)|Xi1, Xj1, Yj1]−m(Xi1)

]]

Clearly E(A1) = E(Ã1). Following Powell, Stock, and Stoker (1989), we now establish two properties:

(a) : Ã1 = op(N
−1/2);

(b) : N × Var(A1 − Ã1)→ 0,

which together imply A1 = op(N
−1/2).
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For property (a), note that

E[m̂(Xi1)|Xi1, Xj1, Yj1] = E[m̂i,−j(Xi1)|Xi1, Xj1, Yj1] + op(N
− 1

2h2θ) = E[m̂i,−j |Xi1] + op(N
− 1

2h2θ)

where m̂i,−j is the nonparametric estimator m̂(Xi1), except for leaving the s-th observation out of the

sample in its construction. Then, we have

Ã1

= − 2

N(N − 1)

N∑
i=1

∑
j 6=i

[
1

hkθ+2
θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)
Yj1
[
E[m̂i,−j |Xi1]−m(Xi1)

]]
+ op(N

− 1
2 )

≡ C1 + op(N
− 1

2 ).

Because

E‖C1‖ ≤ 2E

∥∥∥∥∥ 1

hkθ+2
θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)[
E[m̂i,−j |Xi1]−m(Xi1)

]∥∥∥∥∥
≤ 2C × 1

h2θ
E ‖E[m̂1,−2(X11)|X11]−m(X11)‖

for some positive C <∞. Hence, by Assumption G(ii), property (a) obtains.

For property (b), note that

A1 − Ã1 ≡ −
2

N(N − 1)

N∑
i=1

∑
j 6=i

aij ×
[
m̂(Xi1)− E[m̂(Xi1)|Xi1]

]
+ op(N

− 1
2 ) ≡ C2 + op(N

− 1
2 ),

where aij = 1

h
kθ+2

θ

∇2Kθ

(
m(Xi1)−m(Xj1)

hθ

)
Yj1.

Clearly,

Var(C2) =
4

N2(N − 1)2

N∑
i=1

∑
j 6=i

Var
(
aij ×

[
m̂(Xi1)− E[m̂(Xi1)|Xi1]

])

+
4

N2(N − 1)2

N∑
i=1

∑
j 6=i

∑
j′ 6=i,j

Cov
(
aij
[
m̂(Xi1)− E[m̂(Xi1)|Xt]

]
, aij′

[
m̂(Xi1)− E[m̂(Xi1)|Xt]

])

+
4

N2(N − 1)2

N∑
i=1

∑
j 6=i

∑
i′ 6=i,j

∑
j′ 6=i,j,i′

Cov
(
aij
[
m̂(Xi1)− E[m̂(Xi1)|Xi1]

]
, ai′j′

[
m̂(Xi′1)− E[m̂(Xi′1)|Xi′1]

])
= O(N−2h−kθ−4θ )× Var (m̂(X11)− E[m̂(X11)|X11])

+
4(N − 2)

N(N − 1)
Cov

(
a12
[
m̂(X11)− E[m̂(X11)|X11]

]
, a13

[
m̂(X11)− E[m̂(X11)|X11]

])
+

(N − 2)(N − 3)

N(N − 1)
Cov

(
a12
[
m̂(X11)− E[m̂(X11)|X11]

]
, a34

[
m̂(X31)− E[m̂(X31)|X31]

])
.
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Note that O(N−2h−kθ−4θ ) = o(N−1h−2θ ), Var
{
m̂(X11)− E[m̂(X11)|X11]

}
= o(N−1h−2θ ), and

1

N
Cov

(
a12
[
m̂(X11)− E[m̂(X11)|X11]

]
, a13

[
m̂(X11)− E[m̂(X11)|X11]

])
= O(N−1h−4θ )× Var {m̂(X11)− E[m̂(X11)|X11]} = o(N−2).

Moreover, the last term is the leading term in the above expression, i.e.

Cov
(
a12
[
m̂(X11)− E[m̂(X11)|X11]

]
, a34

[
m̂(X31)− E[m̂(X31)|X31]

])
= E

{
a12
[
m̂(X11)− E[m̂(X11)|X11]

]
×
[
m̂(X31)− E[m̂(X31)|X31]

]ᵀ × aᵀ34}
− E

{
a12
[
m̂(X11)− E[m̂(X11)|X11]

]}
× E

{[
m̂(X31)− E[m̂(X31)|X31]

]ᵀ × aᵀ34}
= Op(h

−4
θ )× op(N−

1
2h2θ)× op(N−

1
2h2θ) +Op(h

−2
θ )× op(N−

1
2h2θ)×Op(h−2θ )× op(N−

1
2h2θ)

= o(N−1).

Hence, we have shown that our estimator θ̂ and the infeasible estimator θ̃ differ by an amount which

is op(N−1/2). Hence, the asymptotic properties for θ̂ are the same as those for the infeasible estimator θ̃,

which were previously established in Powell, Stock, and Stoker (1989).
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