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Abstract

This paper analyzes the dynamic spatial equilibrium of taxicabs and shows how common taxi
regulations lead to substantial inefficiencies as a result of search frictions and misallocation.
To analyze the role of regulation on frictions and efficiency, I pose a dynamic model of spatial
search and matching between taxis and passengers. Using a comprehensive dataset of New York
City yellow medallion taxis, I use this model to compute the equilibrium spatial distribution of
vacant taxis and estimate intraday demand given price and medallion regulations. My estimates
show that the weekday New York market achieves about $5.7 million in daily welfare or about
$27 per trip, but an additional 53 thousand customers fail to find cabs due to search frictions.
Counterfactual analysis shows that implementing simple tariff pricing changes can enhance
allocative efficiency and expand the market, offering daily consumer surplus gains of up to $227
thousand and up to 49 thousand additional daily taxi-passenger matches, a similar magnitude
to the gain in matches generated by adopting a perfect static matching technology.
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1 Introduction

It has been well documented that search frictions lead to less efficient outcomes.1 One particularly

salient reason for the existence of search frictions is that buyers and sellers are spatially distributed

across a city or region so that meeting to trade requires costly transportation by one or both sides

of the market. When locations are fixed, say between households and potential employers, search

frictions arise from the added cost of travel associated with meeting. In some spatial settings,

however, every trade involves a future re-allocation of buyers or sellers. This is a prominent feature

of transportation markets, where every trade entails a vehicle moving from one place to another.

When transportation and search intersect, dynamic externalities arise as each trip affects the search

frictions faced by future buyers and sellers at each destination. In this paper I study the regulated

taxicab industry in New York City, where a decentralized search process and a uniform tariff leads

to distortions in the intra-daily equilibrium spatial patterns of supply and demand. I ask how much

spatial misallocation is induced by search externalities in this setting and to what extent simple

changes to pricing regulations can enhance allocative efficiency.

The taxicab industry is a critical component of the transportation infrastructure in large urban

areas, generating about $23 billion in annual revenues. New York City has long been the largest

taxicab market in the United States, accounting for about 25% of industry revenues in 2013. In

New York and many other cities the taxi market is distinguished from other public transit options

by a lack of centralized control; taxi drivers do not service established routes or coordinate search

behavior. Instead, drivers search for passengers and, once matched, move them to destinations.

Since different types of trips are demanded in different areas of the city, how taxi drivers search for

passengers directly impacts the subsequent availability of service across the city. These movements

of capacity give rise to equilibrium patterns that can leave some areas with little to no service while

in other areas empty taxis will wait in long queues for passengers.

In this paper, I model taxi drivers’ location choices in a dynamic spatial search framework in

which vacant drivers choose where to locate given both the time-of-day pattern of trip demand as

well as the distribution of rival taxi drivers throughout the day. While the spatial search process

under current regulations often generates mis-allocation across locations, I also model frictions

within each location to account for a block-by-block search process within small windows of time.

I show that spatial frictions are largely attributable to inefficient pricing, as tariff-based prices

fail to account for driver opportunity costs and the heterogeneity in consumer surplus that is not

1Since the pioneering work of Diamond (1981, 1982a,b), Mortensen (1982a,b) and Pissarides (1984, 1985), the
search and matching literature has focused on the role of search frictions in impeding the efficient clearing of markets.
The literature frequently examines settings where central or standardized exchange is not possible, including labor
markets (e.g., Rogerson et al. (2005)), marriage markets (e.g., Mortensen (1988)), monetary exchange (e.g., Kiyotaki
and Wright (1989, 1993)), and financial markets (e.g., Duffie et al. (2002, 2005)).

2



internalized by drivers. To empirically analyze this model, I use data from the New York City

Taxi and Limousine Commission (TLC), which provides trip details including the time, location,

and fare paid for all 27 million taxi rides in New York between August and September of 2012.

Using TLC data together with a model of taxi search and matching, I estimate the spatial and

intra-daily distribution of supply and demand in equilibrium. Importantly, the data only reveal

matches made between taxis and customers as a consequence of search activity, but do not show

underlying supply or demand; I therefore cannot observe the locations of vacant taxis or the number

of customers who want a ride in different areas of the city. Because these objects are necessary

for measuring search frictions and welfare in the market, I develop an estimation strategy using

the dynamic spatial equilibrium model together with a local matching function. I show that the

observed distribution of taxi-passenger matches is sufficient to solve for drivers’ policy functions

and compute the equilibrium distribution of vacant taxis without direct knowledge of demand. I

then invert each local matching function to recover the implied distribution of customer demand

up to an efficiency parameter. Finally I estimate matching efficiency using moments related to the

variance of matches across days of the month.

I use this model to evaluate demand elasticities, welfare and search frictions in the New York

taxi market. Baseline estimates of welfare indicate that the New York taxi industry generates

$2.5 million in consumer surplus and $3.3 million in taxi driver variable profits during each 9-hour

day-shift and across 211 thousand taxi-passenger matches, implying a combined surplus of about

$27 per trip. Despite these surpluses, however, there are on average 53 thousand failed customer

searches per day and 5,759 vacant drivers at any point in the day. To what extent can a more

sophisticated pricing policy mitigate these costs by better allocating available supply to demand?

By simulating market equilibrium over nearly one million potential pricing rules, I am able to

solve for a dynamically optimal fare structure and show that a flexible tariff that changes with

origin location can provide up to a 7.7% increase in consumer welfare and a 9% improvement in

taxi utilization. Alternative policies offering flexible tariffs by location and distance yield slightly

smaller benefits to consumers in favor of driver profits and higher utilization rates, but all of the

counterfactual policies tested offer unambiguous benefits to both sides of the market even after

accounting for search and matching frictions.

I contrast these results with two counterfactual technological improvements. The first simulates

ride-sharing technology that offers locally frictionless matching. The second simulates an optimal

dispatcher in offering socially efficient search incentives. I show that optimal pricing policies can

produce nearly the same number of trips as the matching technology and more trips than the

efficient search technology. Optimal prices deliver around 60% of the welfare gains from these

technologies, suggesting that tariff-based pricing alone can offer gains that compete with high-tech

innovations.
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Related Literature

This paper integrates ideas from the search and matching literature with empirical industry dy-

namics. The key component is a model of dynamic spatial choices that adapts elements from Lagos

(2000). Lagos (2000) studies endogenous search frictions using a stylized environment of taxi search

and competition, showing how meeting probabilities adjust to clear the market and how misalloca-

tion can occur as an equilibrium outcome. Lagos (2003) uses the Lagos (2000) model to empirically

analyze the effect of taxi fares and medallion counts on matching rates and medallion prices in

Manhattan. I draw elements from the Lagos search model, but make several changes to reflect the

real-world search and matching process. Specifically, I add non-stationary dynamics, a flexible and

more granular spatial structure, stochastic and price-elastic demand, fuel costs, and heterogeneity

in the matching process across different locations. Further, I build a tractable framework for the

empirical analysis of dynamic spatial equilibrium by providing tools for estimating and identifying

the model. I also model frictional market clearing within each local area via an aggregate match-

ing function. Hall (1979) introduces the aggregate matching function concept, using the urn-ball

specification adapted in this paper.2 The Lagos (2000) framework has been applied more widely in

recent work. Brancaccio et al. (2019, 2020a) study the estimation and identification of matching

functions in spatial settings and apply a related search model to study endogenous trade costs in

the bulk shipping industry. Brancaccio et al. (2020b) study efficiency properties of this model and

Rosaia (2020) applies a similar framework to study economies of density in the New York ride-hail

industry.3

I also draw on literature for estimating dynamic models in the tradition of Hopenhayn (1992)

and Ericson and Pakes (1995), which characterize Markov-perfect equilibria in entry, exit, and

investment choices given some uncertainty in the evolution of the states of firms and their competi-

tors. Here, each taxi operates as a firm choosing where to search in a city. The state variable is the

distribution of taxis across each area of the city, a measure of competition. To facilitate computa-

tion, I make a large-market assumption that both taxi drivers and customers are non-atomic. As

in Hopenhayn (1992) this allows me to compute deterministic state transitions without the need

to integrate over a high-dimensional space of states and future periods. The mass of customers

in each location varies from day to day in each location and period. Drivers do not condition on

these shocks, which I assume are not observed by individual drivers, but rather the expectation of

consumer demand. The equilibrium is therefore similar to an Oblivious Equilibrium (Weintraub

et al. (2008b)) in which drivers form their policies with respect to averages taken across many days

2Mortensen (1986), Mortensen and Pissarides (1999) and Rogerson et al. (2005) survey the labor-search literature
and the implementation of aggregate matching functions.

3There is also a literature in empirical industrial organization which studies the allocative distortions induced
by search frictions in different industries. This includes work on airline parts (Gavazza (2011) and mortgages (Allen
et al. (2014)).
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in the market. This notion is also similar to an Experience-Based Equilibrium (Fershtman and

Pakes (2012)) in which firms’ information set is restricted and agents condition their strategies on

repeated experiences with market outcomes.4

A related study is Frechette et al. (2019), which models the dynamic entry game among taxi

drivers to ask how customer waiting times and welfare are impacted by medallion regulations and

dispatch technology. Similar to my paper, Frechette et al. (2019) study the effect of regulations

on search frictions and welfare.5 The key difference is that they focus on the labor supply decision

rather than the spatial location decision. Though these research questions and approaches differ

substantially, they lead to similar predictions when comparing similar counterfactuals..6

Finally, there is a recent literature on the benefits of dynamic pricing for ride-hail services (Hall

et al. (2015), Castillo et al. (2017), Castillo (2020)). This paper also highlights the impact of pricing

on efficiency, but with two distinct differences. First, I focus on posted tariffs instead of real-time

price adjustment. Posted tariffs are a feature of both traditional taxis and ride-hail services that

affect the search behavior of taxi drivers. Second, I explicitly model the influence of prices on the

dynamic path of supply and demand. I use this model to show how posted prices can be used to

induce dynamically efficient allocations of supply and demand.

This paper contributes in several ways to the study of the taxi industry and more generally

to the methodology of empirical spatial equilibrium models. This is the first empirical analysis of

pricing in a taxi market and the first to study how price regulations impact the equilibrium spatial

allocation of vacant taxis, profits, consumer welfare, trips and utilization. It also contributes by

offering novel evidence for the quantitative impact of frictions in a spatial search market, revealing

important sources of value added by modern ride-hail technology. Methodologically, I contribute

a framework for estimating supply and demand in a dynamic spatial search model when only

matches are observed and where prices are centrally set. This approach may be usefully applied

to other transportation markets like ride-hail, global freight and logistics, and private bus and

trucking markets. I also demonstrate that the behavioral and information assumptions proposed

by Weintraub et al. (2008b) and Fershtman and Pakes (2012) can be leveraged to make such an

4This approach also relates to auction models with many bidders (Hong and Shum (2010)) and as an empirical
exercise in studying non-stationary firm dynamics (Weintraub et al. (2008a), Melitz and James (2007)).

5A diverse literature addresses whether taxi regulation is necessary at all. Both the theoretical and empirical
findings offer mixed evidence. Studies point to regulation’s ability to reduce transaction costs (Gallick and Sisk
(1987)), prevent localized monopolies (Cairns and Liston-Heyes (1996)), correct for negative externalities (Schrieber
(1975)), and establish efficient quantities of vacant cabs (Flath (2006)). Other authors assert that regulations re-
stricted quantities and led to higher prices (Winston and Shirley (1998)) and that low sunk- and fixed-costs in this
industry are sufficient to support competition (Häckner and Nyberg (1995)).

6There is an additional body of literature on taxi drivers’ labor supply choices, including Camerer et al. (1997),
Farber (2005, 2008), Crawford and Meng (2011), and Thakral and Tô (2017). These studies investigate the labor-
leisure tradeoff for drivers. They ask how taxi drivers’ labor supply is determined and to what extent it is driven by
daily wage targets and other factors. Buchholz et al. (2017) estimate a dynamic labor supply model of taxi drivers
to show that behavior consistent with dynamic optimization may appear as a behavioral bias in a static setting.
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estimation tractable in a large-scale strategic setting.

In Section 2 I detail taxi industry characteristics relating to search, regulation, and spatial

sorting, as well as a description of the data. In Section 3 I present a dynamic model of taxi search,

matching and equilibrium. Section 4 outlines my empirical strategy for computing equilibrium

and estimating model parameters. I present estimation results in Section 5 and an analysis of

counterfactual pricing policies in Section 6. Section 7 concludes.

2 Market Overview and Data

2.1 Regulatory Environment

As with nearly all major urban taxi markets, the New York taxi industry is highly regulated. Two

regulations imposed by the New York Taxi and Limousine Commission (TLC) directly impact

market function and efficiency. The first is a tariff-based fare pricing structure. Taxi fares are

based on a one-time flag-drop fee and a distance-based fee, plus additional fees for idling time,

surcharges, taxes and tolls. Except for separate fares for some airport trips, this fare structure does

not depend on location, and except for an evening surcharge to the flag-drop fare, the base fare

structure is fixed over the day. The second type of regulation is entry restrictions imposed via a

limit on the number of legal taxis that can operate. This is implemented by requiring drivers to

hold a “medallion” or permit, the supply of which is capped (Schaller (2007)).7 Medallion cabs can

only be hailed from the street and are not authorized to conduct pre-arranged pick-ups, a service

exclusively granted to separately licensed livery cars.

In recent years, several ride-hail firms including Uber and Lyft have entered the taxi industry

including the New York market. These firms operate mobile platforms to match customers with

cabs, greatly reducing frictions associated with taxi search and availability. The precipitous expan-

sion and popularity of ride-hail suggests there are large benefits associated with both the reduced

search costs and more flexible pricing technologies compared with traditional taxi markets. My

paper aims to understand how price regulation and matching technology impact the equilibrium

spatial allocations of supply and demand as well as the corresponding impact on market welfare

and efficiency.8

7These licenses are tradable, and the fact that they tend to have positive value, sometimes in excess of one million
dollars, implies that this quantity cap is binding and below the quantity that would be supplied in an unrestricted
equilibrium.

8The spatial availability of taxis is of evident concern to municipal regulators around the country: a number of
cities have introduced policies to control the spatial dimension of service. For example, in the wake of criticism over the
availability of taxis in certain areas, New York City issued licenses for 6,000 additional medallion taxis in 2013 with
special restrictions on the spatial areas they may service (See, e.g., cityroom.blogs.nytimes.com/2013/11/14/new-
york-today-cabs-of-a-different-color/). Specifically, these green-painted “Boro Taxis” are only permitted to pick up
passengers in the boroughs outside of Manhattan.9 Though the city’s traditional yellow taxis have always been able to
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2.2 Data

In 2009, the New York TLC initiated the Taxi Passenger Enhancement Project, which mandated

the use of upgraded metering and information technology in all New York medallion cabs. The

technology includes the automated data collection of taxi trip and fare information. I use TLC

trip data from all New York City medallion cab rides given from August 1, 2012 to September

30, 2012. An observation consists of information related to a single cab ride. Data include the

exact time, date and GPS coordinates of pickup and drop-off, trip distance, and trip time length

for approximately 27 million rides.10 New York cabs typically operate in two separate shifts of

9-12 hours each, with a mandatory shift change between 4–5pm. I focus on the weekday, day-shift

period of 7am until 4pm and I assume all drivers stop working at 4pm.

Due to New York rules governing pre-arranged trips, the TLC data only record rides originating

from street-hails. This provides an ideal setting for analyzing taxi search behavior since all observed

rides are obtained through search. Table 1 provides summary facts for this data set. I provide

additional monthly-level statistics in Appendix A.3.

Most of the time, New York taxis operate in Manhattan. When not providing rides within

Manhattan, the most common origins and destinations are New York’s two city airports, LaGuardia

(LGA) and John F. Kennedy (JFK). At the airports taxis form queues and wait in line for next

available passengers. Table 2 provides statistics related to the frequency and revenue share of trips

between Manhattan, the two city airports, and elsewhere.

Uber began operating in New York City in 2011, but service was minimal. In an October 2012

interview, the CEO reported that 160 drivers had provided trips in the city since the company’s

entry into New York.11 This represents about 1% of licensed yellow cab drivers, and likely much

less in trip volume as these drivers were not necessarily operating consistently throughout the prior

year.

2.3 September 2012 Fare Hike

On September 4, 2012, the TLC increased tariffs from $2.50 plus $2.00/mile, to $2.50 plus $2.50/mile.

The flat rate fare charged for rides between JFK and Manhattan also increased from $45 to $52.

Average fares increased by about 17%. Although this change provides critical price variation that

operate in these areas, it’s apparent that service was scarce enough relative to demand that city regulators intervened
by creating the Boro Taxi service. This intervention highlights the potential discord between regulated prices and
the location choices made by taxi drivers.

10Using this information together with geocoded coordinates, we might learn for example that cab medallion 1602
(a sample cab medallion, as the TLC data are anonymized) picks up a passenger at the corner of Bowery and Canal
at 2:17pm of August 3rd, 2012, and then drives that passenger for 2.9 miles and drops her off at Park Ave and W.
42nd St. at 2:39pm, with a fare of $9.63, flat tax of $0.50, and no time-of-day surcharge or tolls, for a total cost of
$10.13. Cab 1602 does not show up again in the data until his next passenger is contacted.

11Source: https://www.cnet.com/news/uber-quietly-puts-an-end-to-nyc-taxi-service/.
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Table 1: Taxi Trip and Fare Summary Statistics

Sample Rate Type Variable Obs. 10%ile Mean 90%ile S.D.

All Data

Standard
Fares

Total Fare ($) 27,475,749 4.90 10.57 19.00 6.95
Dist. Fare ($) 27,475,749 1.36 5.59 12.00 6.14
Flag Fare ($) 27,475,749 2.50 2.83 3.50 0.36
Distance (mi.) 27,475,749 0.82 2.70 6.00 2.74
Trip Time (min.) 27,475,749 4.00 12.04 22.52 8.23

JFK Fares

Total Fare ($) 491,689 45 48.32 52 3.58
Distance (mi.) 491,689 3.02 16.25 20.58 5.95
Trip Time (min.) 491,689 22.75 39.49 60.00 17.33

Weekdays,
Day-Shift,
Manhattan
& Boro.

Standard
Fares

Total Fare ($) 8,122,515 4.50 10.16 17.70 6.39
Dist. Fare ($) 8,122,515 1.12 4.65 9.60 5.33
Flag Fare ($) 8,122,515 2.50 2.5 2.5 0
Distance (mi.) 8,122,515 0.71 2.28 4.66 2.36
Trip Time (min.) 8,122,515 4.00 12.74 23.8 8.49

JFK Fares

Total Fare ($) 163,737 45.00 48.30 52.00 3.60
Distance (mi.) 163,737 6.00 16.41 20.95 5.77
Trip Time (min.) 163,737 28.00 46.35 67.22 18.40

Taxi trip and fare data come from the New York Taxi and Limousine Commission (TLC). This table provides statistics
related to individual taxi trips taken in New York City between August 1, 2012 and September 30, 2012 for two fare
types. The first is the standard metered fare (TLC rate code 1), in which standard fares apply, representing 98.1% of
the data. The second is a trip to or from JFK airport (TLC rate code 2). Total Fare and Distance are reported for
each trip. The two main fare components are a distance-based fare and a flag-drop fare. I predict these constituent
parts of total fare using the prevailing fare structure and trip distance. Flag fare calculations include time-of-day
surcharges. The remaining fare is due to a fee for idling time plus a $0.50 per-trip tax. The first set of statistics
corresponds to the full sample of all New York taxis rides across the two months. The second set concerns the smaller
sample used in my analysis: weekday day-shift trips occurring within the regions in Figure 1.

Table 2: Taxi Trips and Revenues by Area

Time Place Obs. Mean Fare Trip Share Rev. Share

All Times

Intra-Manhattan Trips 24,704,475 $9.24 90% 75%
Airport Trips 1,320,091 $34.72 5% 15%
Other Trips 1,478,992 $21.01 5% 10%

Weekdays,
Day-shift

Intra-Manhattan Trips 7,773,214 $9.29 91% 76%
Airport Trips 497,445 $34.92 6% 18%
Other Trips 258,198 $20.94 3% 6%

This table provides statistics related to the locations of taxi trips taken in New York City between August 1, 2012
and September 30, 2012. Intra-Manhattan trips begin and end within Manhattan, Airport Trips are trips with either
an origin or destination at either LaGuardia or JFK airport. Other Trips captures all other origins and destinations
within New York City. Statistics are reported for all times as well as for the day-shift period of a weekday.

I use together with an equilibrium model to identify demand elasticities, a closely related pattern

can be directly observed in the number of trips taken. Table 3 separates trips into four distance
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categories, and for each shows the post-fare-hike changes in daily trips and average fares for both

the morning and afternoon hours. Consistent with the increased distance tariff, fares on longer trips

generally increased more than shorter trips.12 Due to search and matching frictions, trips are not

necessarily equivalent to passenger demand. However these patterns do suggest that demand was

impacted differentially across trip lengths, and moreover that the impact was not proportional to

the price change alone. In Appendix A.4 I show an alternative spatial decomposition of the effects

in order to show how the fare hike impacted the average fares and trips across spatial regions of

the city.

Table 3: Effect of the September 2012 Fare Hike

Description
Trip Type

0-2 mi. 2-4 mi. 4-6 mi. >6 mi. Airport Trips

Mornings: 7:00am-12:00pm
Change in log fares 0.162 0.208 0.215 0.198 0.124
Change in log trips −0.039 −0.107 −0.164 −0.163 −0.141

Afternoons: 12:00pm-4:00pm
Change in log fares 0.162 0.205 0.211 0.194 0.124
Change in log trips −0.122 −0.163 −0.223 −0.220 −0.111

This table shows the mean change in log fares and log number of trips following the September 4, 2012 fare hike.
Fare calculation includes base fares, taxes, surcharges and imputed tips.

2.4 Discretizing time and space

To analyze the spatial and inter-temporal distributions of supply and demand, I discretize time

and space across the weekday, day-shift hours in this market. Time is divided into five minutes

periods. I divide space into 39 distinct areas that are linked to observed GPS points of origin and

destination for each taxi trip. These locations represent 98% of all taxi ride originations, and I

depict them in Figure 1. The average observed travel time from one location to a neighboring

location is 2 minutes, 45 seconds, or about one-half of a five-minute period. This suggests that the

5-minute period is reasonably well-suited to this geographic partitioning. For additional details on

location selection and construction see Appendix A.2.

I further denote five regions as disjoint subsets of all 39 locations. I depict regions as shaded

sections of Figure 1. Each region is characterized by a unique mix of geographical features and

transit infrastructure. I will estimate the efficiency of search for each of these five regions. Region

12Trips over six miles are much more likely to include bridge or tunnel surcharges so the average fare increase in
this category is slightly lower. The number of trips also declined more on longer routes.
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JFK Airport

Region	I

Region	II

Region	III

Region	IV

Region	V

Water/Rivers

Locations

Locations
and	Regions

LGA Airport

Figure 1: 39-Location Map of New York City

Each of the outlined sections of Manhattan is one of the 39 locations indexed by i in my model. Locations are formed
by aggregating census-tracts. Each shaded section depicts a region r, indicated with Roman numerals I–V. Regions
are characterized by similarities in transit infrastructure, road layouts, and zoning.

I is Lower Manhattan, an older part of the city where streets follow irregular patterns, and where

numerous bridges, tunnels and ferries connect to nearby boroughs and New Jersey. Region II is

Midtown Manhattan, with fewer traffic connections away from the island, but denser centers of

activity including the major transit hubs Penn Station and Grand Central Station. Region III is

Uptown Manhattan, where streets follow a regular grid pattern, but are longer and more spread

out. Few bridges, tunnels or stations offer direct connections to other boroughs. Region IV is the

large area encompassing Brooklyn and Queens. Region V consists of the two airports, John F.

Kennedy (JFK) and LaGuardia (LGA).

2.5 Evidence of Frictions

Search frictions occur when drivers cannot locate passengers even though supply and demand

coexist at the same point in time. Frictions in this market manifest as waiting time experienced by

drivers looking for a passenger. The TLC data provide evidence of search frictions for drivers that

vary across space and time of day. Using driver ID together with the time of pick-up and drop-off,

I compute the waiting time between trips. The mean waiting time for different trips is displayed

in Figure 2. Panel (a) shows the probability that a driver will find a passenger in each five-minute
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period, as well as the expected waiting time to find a passenger in 10-minute units (i.e., a value of

0.5 equals 5 minutes). There is substantial intra-day variation in search times, with the best times

of day for finding passengers around 9am to 4pm, with average wait times around six minutes and

five-minute finding rates around 50%. The worst times are in early morning and mid-day, when

average wait times are nearly 10 minutes and finding rates fall as low as 25%. Panel (b) shows

the same driver match probabilities and waiting times by the 37 non-airport locations, taken as an

average from 7am-4pm across all weekdays of the month. Again there is heterogeneity across space,

with relatively higher match probabilities and lower waiting times in Lower Manhattan (1–8) and

Midtown (9–18), declining match probabilities in upper Manhattan (19–34), and even lower match

probabilities in Brooklyn (35–37).13 In aggregate, drivers spend about 47% of their time vacant

during the sample period of weekdays during the day-shift. This suggests that among 11,500 active

drivers, an average of 5,405 are vacant at any time.14

7a 8a 9a 10a 11a 12p 1p 2p 3p 4p

0.2

0.4

0.6

0.8

1 5-min Match Probability
Mean Wait times (10-min units)

0 5 10 15 20 25 30 35

0.2

0.4

0.6
Match Probability

0 5 10 15 20 25 30 35
Locations 1 to 37

5

10

Mean Waiting Time (Min.)

Figure 2: Taxi wait times and match probabilities by time-of-day and location

TLC Data from August 2012, Monday–Friday from 7am until 4pm, within regions indicated on Figure 1. Left Panel:
Each series shows taxi drivers’ five-minute probability of finding a customer and mean waiting times, averaged across
all drivers and all weekdays. Dotted lines depict 25th and 75th percentiles. Right Panel: Each bar shows driver
waiting times and matching probabilities by location of drivers’ last drop-off. Manhattan locations follow a roughly
South-to-North trajectory from index 1–34. Brooklyn locations are indexed 35–36. Queens is location 37.

13There is additional evidence that drivers often relocate to find passengers: 61.3% of trips begin in a different
neighborhood from the neighborhood where drivers last dropped off a passenger. This suggests that there are spatial
search frictions for drivers, as finding a customer requires relocation.

14The data do not reveal the frictions faced by customers; it is impossible to tell how long a customer has been
waiting before pick-up, and it is similarly not possible to tell if a customer arrived to search for a taxi and gave up.
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3 Model

A city is a network of L nodes called “locations”, connected by a set of routes. A location can be

thought of as a spatial area within the city.15 Time within a day is divided into discrete intervals

with a finite horizon, where t ∈ {1, ..., T}. At time t = 1 the work day begins; at t = T it ends.

Model agents are vacant taxi drivers who search for customers within a location i ∈ {1, ..., L}. When

taxis find passengers, they drive them from origin location i to a destination location j ∈ {1, ..., L}.
Denote vti ∈ R as a measure of vacant taxis and denote uti ∈ R as a measure of customers looking for

a taxi in each location at each time. The total number of taxis in the city is given by
∑

i v
t
i = v̄ for

all t. The distance between each location is given by δij and the travel time between each location

is given by τij .

The model has four basic ingredients. First, there is a demand system that describes, for every

neighborhood pair ij, how many customers will arrive to the market to search for a taxi as a

function of the price of service along that route. Second, there is a payoff vector associated with

every route that taxis service. Payoffs include the revenues from each ride minus a service cost

due to fuel expenses. Third, there is a model of period-by-period market clearing. Here I use an

aggregate matching function to map supply and demand into match probabilities, which adjust

payoffs depending on the relative quantities of taxis and customers.16 Finally, I combine these

components in a dynamic model of location choice. In this model vacant drivers make period-by-

period location choices accounting for the expected match probabilities and payoffs associated with

future locations. These four ingredients are presented in more detail below.

3.1 Demand

In each location i at time t, the measure of customers that wish to move to a new location, uti, is

drawn from a Poisson distribution with parameter λti. Moreover, λti is a sum of independent Poisson

random variables with λti =
∑

j λ
t
ij(π

t
ij), where λtij(π

t
ij) represents the destination-j-specific Poisson

arrival of customers in location i at time t. The independence of λtij across destinations j entails

that there are no aggregate shocks in origin location i. Thus the daily draw of demand for route ij

are uncorrelated with that day’s demand draw for route ik.17 The parameters λtij are functions of

the price of a taxi ride between i and j, πtij . Denote the probability that a customer in i wants to

15e.g., a series of blocks bounded by busy thoroughfares, different neighborhoods, etc.
16Note that in a setting of ride-hail, in which prices adjust to neighborhood market conditions, we might instead

recast this model as one of localized price formation instead of search frictions.
17In my application, the average location size is over 0.5 square miles and thus large enough to rationalize such an

assumption as they span much more area than any one property. The data do not span major holidays or athletic
events and there was no major weather event that would shut down traffic in large areas. Smaller-scaled shocks, say
due to demand at a specific property or event, are too granular to model separately given data and computational
constraints.
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travel to location j ∈ {1, ..., L} at time t by M t
ij , so that λtij(π

t
ij) = M t

ij ·λti(π), where π is a vector

of prices between all locations.

I assume that taxi drivers face a constant-elasticity demand curve. Demand depends on the

origin and destination of the trip, its price, and the time of day, and whether the trip involves an

airport (a binary index denoted by ι). Each of these factors shifts demand according to parameters

β0,i,t,s,ι. Price elasticities, given by parameter β1,s,ι are assumed to vary according to the distance

of the trip, indexed by discrete categories s, and airport status ι. Taxi demand is therefore given

by the following:

ln(λtij(π
t
ij)) = β0,i,t,s,ι + β1,s,ιln(πtij) + ηi,t,s,ι. (1)

In addition, I assume that customers demand taxi services for one period. After this period,

consumers use a different method of transit.18

Waiting Time I do not observe customer waiting time, but it may be an important determinant

of demand for taxi rides.19 To identify the price elasticity of demand in this specific exercise, I

provide evidence that the September price change had a negligible effect on waiting times. There

are two primary reasons for this. First, since the estimation of demand parameters λtij does not

require knowledge of waiting time or price elasticities, I compute a measure of waiting time using

customer match probabilities.20 I find that the price change lead to an estimated average waiting

time change of approximately 21 seconds. Further, the limited empirical evidence for waiting time

elasticities suggests that it should be relatively small. Frechette et al. (2019) estimate waiting time

elasticity of demand to be about -1.2, while Buchholz et al. (2020) estimate average waiting time

elasticity in a large European taxi market to be -0.7. In counterfactuals, however, I study changes

to pricing policies that may be large enough to meaningfully impact waiting times. Therefore in

all counterfactuals I implement a waiting time elasticity calibrated to -1.0 and allow demand to

adjust accordingly.

3.2 Revenue and Costs

Taxis earn revenue from giving rides. At the end of each ride, the taxi driver is paid according to

the fare structure. The fare structure is defined as follows: b is the one-time flag-drop fare and π is

18In the empirical analysis to follow, I define one period as five minutes.
19Many recent studies estimate the value of time in different contexts. See, e.g., Small (2012), Buchholz et al.

(2020), Kreindler (2020), and Castillo (2020).
20This estimate is premised on the assumption that consumer search takes at most five minutes, after which

consumers exit the market. Consumers find a match with probability qti = mt
i/λ

t
i where mt

ij is the observed matches
in each i, t cell. I then compute a measure of expected waiting time (in units of minutes) as 5 · (1− qti) assuming any
matches are made instantaneously.
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the distance-based fare, with the distance δij between locations i and j. There is also an additional

fee based on waiting time and idling time in traffic, given by bt2,ij The total fare revenue earned by

providing a ride from i to j is πtij = b0 + b1δij +bt2,ij . Note that πtij is also the customer price of a

trip along route i to j at t.

Drivers have two sources of costs. First, there are fixed costs to a driver for being able to

operate a taxi. This cost includes a daily or weekly lease fee for a taxi and medallion license, or

alternatively, any financing costs for drivers who own tai and medallion. The opportunity costs of

drivers can also be regarded as a part of the fixed cost. The second source of cost is fuel expenses.

Denoting per-mile fuel costs as c, the route-specific fuel costs are given by cij = c · δij .
My analysis holds fixed the entry decisions of taxis, so I do not model fixed costs and instead

focus on drivers’ optimization while working. On any particular day a driver is working, medallion

leasing fees and other fixed costs for that day are sunk and therefore independent of the driver’s

search choices.

The net revenue of any passenger ride is given by

Πt
ij = πtij − cij . (2)

This profit function sums the total fare revenue earned net of fuel costs in providing a trip from

location i to j at time t.

3.3 Searching and Matching

At the start of each period, taxis search for passengers. The number of taxis in each location at

the start of the period is given by the sum of previously vacant taxis who have chosen location i to

search, plus the previously employed taxis who have dropped off a passenger in location i. This sum

is denoted as vti . I make the following assumptions about matching: (1) matches can only occur

among cabs and customers within the same location, (2) matches are randomly assigned between

taxis and customers, and (3) once a driver finds a customer, a match is made and the driver cannot

refuse a ride.21 The expected number of matches made in location i and time t is given by an

aggregate matching function m(λti, v
t
i). The ex-ante probability that a driver will find a customer

is then given by p(λti, v
t
i) =

m(λti,v
t
i)

vti
. Figure 3 illustrates the within-period search and matching

process.

3.3.1 A Model of Neighborhood Search

There are two types of locations, neighborhoods and airports. Neighborhoods comprise most of a

city; they are locations in which cabs drive around to search for passengers. Below I detail how

21In New York, the TLC prohibits refusals, c.f. www.nyc.gov/html/tlc/html/rules/rules.shtml.
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passengers arrive
with Poisson param. λti

vacant taxis + taxis

dropping off passengers = vti

expected matches =

m(λti, v
t
i)

match probability =

p(λti, v
t
i) =

m(·,·)
vti

taxis w/ passengers

(remaining customers wait
5-minutes and disappear)

vacant taxis

Figure 3: Flow of demand, matches, and vacancies within a location

This illustration depicts the sources of taxi arrivals and departures in location i at time t. At the beginning of a
period, all taxis conducting search in location i have either dropped off passengers or were searching from previous
periods. In expectation (given randomness in the mass of customers arriving each day), matches are determined
by m(λti, v

t
i). At the end of the period, any employed taxis leave for various destinations and vacant taxis continue

searching.

matches are formed in neighborhoods. The next subsection discusses airports.

When model locations are specified as spatial areas such as a neighborhood, search within this

area will exhibit search frictions even when block-by-block search is nearly frictionless. This design

echoes the setup of Lagos (2000) that allows search frictions to arise endogenously from driver

behavior. To model search frictions within each location while allowing for the possibility that

frictions are not the same in each location, I use the following aggregate matching function.22

m(λti, v
t
i , αr) = vti ·

(
1− e

− λti
αrv

t
i

)
(3)

Equation 3 is a reduced-form model of intra-location matching. It can flexibly reproduce fric-

tions (i.e. such that m(λti, v
t
i , αr) < min(λti, v

t
i)), the extent of which are controlled by the search

efficiency parameter αr > 0. All else equal, larger values of αr generate fewer matches. r = r(i)

denotes a region, or a subset of locations as described in Section 2.4. αr is region-specific as it

reflects the difficulty of search within a region, such as the complexity of the street grid. These are

physical characteristics of a region which are assumed to be fixed across the day. I illustrate the

aggregate matching function and the role of αr in Figure 4.

Moreover, this equation is specified in terms of expected demand λti and not the daily draws uti.

It represents the expected number of matches produced given demand parameter λti and vacant taxi

22This function is derived from an urn-ball matching problem first formulated in Butters (1977) and Hall (1979).
While the original model characterizes matches from discrete (i.e., integer) inputs, my specification characterizes
urn-ball matching with a large number (or continuum) of inputs. See, e.g., Petrongolo and Pissarides (2001) and the
derivation in Appendix A.9.
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supply vti . This is the relevant object from the perspective of taxi drivers’ location optimization

problem. Hereafter I denote mr(λ
t
i, v

t
i) = m(λti, v

t
i , αr) to be the location-specific matching function.

I adopt the convention that mr(·, ·) refers to the matching function while the scalar mt
i is a measure

of matches that occur in a location i and period t. The probability of a match from a taxi driver’s

perspective is therefore given by

pr(λ
t
i, v

t
i) =

mr(λ
t
i, v

t
i)

vti
=

(
1− e

− λti
αrv

t
i

)
. (4)
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Figure 4: Matching Efficiency and α

This figure shows contour plots of the matching function over three values of α. Contour levels depict the expected
number of matches produced in a given location when the level of taxis is v and the expected arrivals of customers
is λ, for each level of α.

3.3.2 Airport Queueing

At airports, taxis pull into one of multiple queues and wait for passengers to match with cabs at

the front of the queue.23 Queues may also form on the customer side, for example following a large

arrival flight. I interpret demand in the queues as the volume of customers who are granted access

to leave the customer queue and enter a taxi, as opposed to the length of the customer queue itself.

This interpretation allows for abstracting away from unobserved customer queue lengths and other

unobservable factors like traffic congestion which may limit the full queue from clearing in every

period even when there are many taxis available. I discuss the implications of this assumption

further in Section 4.2. Taxis will therefore face some expectation of waiting time in order for the

queue to clear as a function of the length of the taxi queue, which I denote as wti .

23In my sample roughly 6% of all taxi trips and 16% of revenues involve one of the two major New York airports.
It is important to model airport queueing separately from traditional forms of search because queues reduce the
available stock of searching taxis, an important quantity of interest in this study.
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3.4 Dynamic Model of Taxi Drivers’ Locations, Actions and Payoffs

A taxi driver’s behavior depends on his own location, whether he is employed or not at the end of

the period, and the market state, St. Let ekij denote the set of employed taxis in location i who

matched in period k < t with a trip to j. The market state St at time t is a measure of vacant taxis

vti in each location i and a measure of employed taxis ekij that are in-transit between locations.24

Thus the market state at time t is summarized by

St = {{vti}i∈{1,...,L}︸ ︷︷ ︸
vacant cabs

, {ekij}i,j∈{1,...,L}2,k<t︸ ︷︷ ︸
hired cabs in-transit

}. (5)

Denote S = {St} for t ∈ {1, ..., T} so that S reflects the entire spatial and inter-temporal

distribution of vacant and employed taxis. At the beginning of each period, taxi drivers hold

beliefs about the current-period state and how it will evolve going forward. Given these beliefs,

they assign value V t
i to each i, t-pair.

I define the drivers’ ex-ante (i.e., before observing any shocks and before any uncertainty in

passenger arrivals is resolved) value as

V t
i (St) = ES|S1

[
pr(λ

t
i, v

t
i)

Exp. Value of Fare︷ ︸︸ ︷(∑
j

M t
ij · (Πt

ij + V
t+τij
j (St+τij ))

)
+

(1− pr(λti, vti)) · Eεj,a
[

max
j∈A(i)

{
V
t+τij
j (St+τij )− cij + εj,a

}]
︸ ︷︷ ︸

Exp. Value of Vacancy

]
. (6)

This expression has two components. Drivers in location i at time t expect to contact a passenger

with probability pr(λ
t
i, v

t
i). Drivers’ payoff for providing a trip is equal to the net profit of a trip Πt

ij

plus continuation values V
t+τij
j of being in location j after τij periods have elapsed. Therefore the

expected value of a trip is simply the value of a trip to each location j weighted by the probability

that a passenger picked-up in i chooses j as the destination, which is given by M t
ij .

25

At the end of the period, any cabs that remain vacant can choose to relocate or stay put to

begin a search for passengers in the next period. The set A(i) reflects the set of locations available

to vacant taxis and is limited to all adjacent locations in the city, where adjacency is defined as

24At any moment, employed taxis are not directly competing with vacant taxis for passengers. Accounting for
the distribution of employed taxis is an important component of the state variable because the eventual arrival of
employed taxis and subsequent transition to vacancy is payoff-relevant when deciding how to conduct future search.

25Note that M t
ij has superscript t because passenger preferences change throughout the day.
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locations that can be reached in one period, where τij = 1. In addition, all trips to and from

airports are included in each choice set. In these cases, τij > 1.26

Vacant drivers choose to search next period in the location that maximizes total expected payoff

as the sum of continuation values V
t+τij
j (S), fuel costs cij and a contemporaneous, idiosyncratic

shock εtja. ε
t
ja is a driver a-specific i.i.d. shock to the perceived value of search in each alternative

location j, which I assume to be drawn from a Type-I extreme value distribution. This shock

accounts for unobservable reasons that individual drivers may assign a slightly greater value to one

location than another. For example, traffic conditions and a taxi’s direction of travel may make it

inconvenient to search anywhere but further along the road in the same direction.27

Vacant drivers in location i move to location j∗ by solving the last term in equation 6:

j∗ = arg max
j
{V t+τij

j (St+τij )− cij + εja}. (7)

To compute the drivers’ strategies, I define the ex-ante choice-specific value function asW t
i (ja,St),

which represents the net present value of payoffs conditional on taking action ja while in location

i, before εja is observed:

W t
i (ja,St) = ESt+τija

[
V
t+τija
ja

(St+τija )− cija
]
. (8)

Defining W t
i allows for an expression of taxi drivers’ conditional choice probabilities: the prob-

ability that a driver in i will choose j ∈ A(i) conditional on reaching state St, but before observing

εja, is given by

P ti [ja|St] =
exp(W t

i (ja,St)/σε)∑
k∈A(i) exp(W t

i (jk,St)/σε)
. (9)

This expression defines aggregate policy functions σti = {P ti [j|St]}j∈{1,...,L} as the probability of

optimal transition from an origin i to all destinations j conditional on future-period continuation

values.

Time ends at period T . Continuation values beyond t = T are set to zero: V t
i = 0 ∀t > T, ∀i.

Employed taxi drivers with arrival times beyond period T are assumed to finish en-route trips

before quitting.

26I assume A(i) is known to drivers. By examining hourly trip time distributions between all pairs of locations,
I find that unobserved road blockages between locations, in which minimum travel times on a route increase above
the overall mean for that route, occur in less than 1% of all route-hours. This suggests that A(i) is relatively stable
over time.

27The terms εja also ensure that vacant taxis leaving one location will mix among several alternative locations
rather than moving to the same location, a feature broadly corroborated by data.
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3.5 Intraday timing

There is an exogenous initial distribution of vacant taxis denoted S1. It is known to all drivers and

constant across each weekday. This distribution accounts for the early morning positions of taxis

as they leave from garages and arrive to the search regions of the city. Vacant taxis conduct search

at the start of each period t. At the end of a period any newly employed taxis disappear from the

stock of vacant cabs, transit customers to their destinations, and earn revenue. Vacant taxis earn

no revenues but earn the option value associated with each possible move. In the next period, the

locations of all vacant taxis are updated based on movement from both employed taxis dropping

off passengers and previously vacant taxis’ who arrive to new locations.

I assume drivers are unaware of the i.i.d. demand shocks in each location and time, and instead

condition policies on long-run market averages (which might, for example, be learned through

experience). Taxis hold beliefs ṽti over the stock of vacant taxis in each i, t that is invariant over all

weekdays. Drivers do not update beliefs about the market when they are matched or unmatched,

as any subsequent taxi supply is assumed to be unaffected by shocks in any one location. These

assumptions are formalized in Section 4.2. Since customer arrivals are Poisson, λti is the expected

demand faced by taxi drivers. Drivers form policies based on forecasting the following intra-day

sequence of events:

1. Taxis are exogenously distributed each day according to S1.

2. mr(λ
1
i , ṽ

1
i ) taxis become employed with matched customers in each location.

3. The remaining λti −mr(λ
1
i , ṽ

1
i ) expected number of unmatched customers leave the market.

4. The remaining vti−mr(λ
1
i , v

1
i ) vacant taxis choose a location to search in next period according

to policy functions.

5. Previously vacant and some previously employed taxis arrive in new locations, forming dis-

tribution S̃2 = {ṽti}.28

6. The process repeats from S̃2, S̃3, etc. until reaching S̃T .

3.6 Transitions

Policy functions σti form a matrix of transition probabilities from origin i to all destinations j ∈ L.

Note that only vacant taxis transition according to these policies. Employed taxis will transition

according to a different matrix of transition probabilities given by M t
i denoting the probability

28Many hired taxis are in-transit for more than one period. If trips from location i to j will take 3 periods to
complete the trip, then only the taxis who were 1 period away at time t− 1 will arrive in j in period t.
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that a matched customer in i will demand transit to any destination j ∈ L. Together, these two

transition processes generate a law of motion for the state variable S.

The transition kernel of employed taxis is given by Qemployed(et+1
i |eti,M t,mt) where eti is the

distribution of employed taxis across locations in period t, M t = {M t
ij} for i, j = {1, ..., L} is the

set of transition probabilities of each matched passenger at time t and mt = {mt
i} for i = {1, ..., L}

is the distribution of matches. Qemployed specifies the expected distribution of all employed taxis

eti over locations in period t+ 1.

Likewise, the transition kernel of vacant taxis is given by Qvacant(vt+1
i |vti , σt). As with Qemployed,

Qvacant specifies the expected t+1 spatial distribution of period t vacant taxis, given the transitions

generated from policies σt = {σti} for i = {1, ..., L}. The combined set of transitions forms an aggre-

gate transition kernel that defines the law-of-motion, given byQ(St+1|St) =Qemployed(et+1
i |eti,M t,mt)

+Qvacant(vt+1
i |vti , σt). I provide explicit formulas for the state transitions in Appendix A.6.

3.7 Equilibrium

Taxi drivers’ policies in a given period depend on their beliefs about the distribution of their com-

petitors, the policies of competitors when vacant, expected demand across different neighborhoods

and the destination preferences of customers across neighborhoods. Beliefs over the current state

and competitors’ policies enable drivers to infer how the distribution of vacant taxis at time t will

update in future periods. Beliefs about demand and customer destination preferences across neigh-

borhoods similarly enable drivers to infer how the distribution of matched cabs and their movement

will affect the future distribution of vacant taxis. The net transition of taxis’ vacant capacity from

one period to the next is denoted as Q̃ti.

Definition Equilibrium is a sequence of state vectors
{
St
}

, transition beliefs {Q̃ti} and policy

functions
{
σti
}

over each location i = {1, ..., L}, and an initial state
{
S0
i

}
∀i such that:

(a) In each location i ∈ {1, ..., L}, at the start of each period, matches are made according to

equation 3 and are routed to new locations according to transition matrix M t. The aggregate

movement generates the employed taxi transition kernel Qemployed(vt+1
e |vte,M t,mt) where vte

is the distribution of employed taxis across locations in period t and mt is the distribution of

matches across locations.

(b) In each location i ∈ {1, ..., L}, at the end of each period, vacant taxi drivers (indexed by a)

follow a policy function σti,a(St, Q̃ti) that (a) solves equation 7 and (b) derives expectations

under the assumption that the state transition is determined by transition kernel Q̃ti. The

aggregate movement generates the vacant taxi transition kernel Qvacant(vt+1
v |vtv, σ̃t,St) where

vtv is the distribution of vacant taxis in period t.
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(c) State transitions are defined by the combined movement of vacant taxis and employed taxis,

defined by Q(St+1|St) = Qemployed(vt+1
e |vte,M t,mt) ∪Qvacant(vt+1

v |vtv,St).

(d) Agents’ expectations are rational, so that transition beliefs are self-fulfilling given optimizing

behavior: Q̃ti = Qti for all i and t.

Proposition 3.1. The equilibrium defined above exists and is unique.

Proof. See Appendix A.7

Equilibrium delivers a distribution of vacant taxi drivers such that no driver can systematically

profit from an alternative policy: there is no feasible relocation that would, ex-ante, make search

more valuable. Vacant taxis are therefore clustered in locations with more profitable customers,

but the associated profits are offset by higher search frictions. One implication of this sorting

pattern is that equilibrium value functions are nearly identical across locations in each time period.

Value functions do not exactly equate, however, because time and fuel make arbitrage costly. See

additional details in Appendix A.10.

3.8 Model Notation Summary

Table 4 summarizes the symbols and notation used in the model.

4 Empirical Strategy

In this section I present an estimation strategy that is designed to (1) solve for equilibrium and

(2) use this equilibrium to recover model parameters. Estimation is conducted separately for each

month. Each parameter, such as those governing demand, matching efficiency, and the travel time

and distance between locations, represents a monthly-average. Driver behavior is based on these

monthly averages. Below I detail the two main components of estimation.

4.1 Computing Equilibrium

The equilibrium location choices of vacant taxi drivers and their resulting spatial allocations must

be computed in order to estimate model parameters. I make the following assumptions about the

total supply of taxis and their information set.

Assumption 1 The total supply of cabs v̄ for each weekday day-shift during the period studied

is equal to 11,500.

21



Table 4: Notation and Symbol Guide

Description Symbol Member Set

Index Variables
Origin location index i {1,...,39}
Destination location index j {1,...,39}
Time index t {1,...,108}
Region index r = r(i) {1, 2, 3, 4, 5}
Driver index a N

Market Environment, Prices and Costs

Vacant taxis vti R
Total employed taxis in i eti R
Employed taxis from trip i to j etij R
Total number of taxis v̄ =

∑
i v

1
t R

Travel time between any two locations τij R
Distance between any two locations δij R
Set of locations adjacent to location i A(i)
Distance fee per mile in USD b0 R
Fixed fee per trip in USD b1 R
Idling time fee per trip in USD bt2,ij R
Fuel cost per mile in USD c R
Fuel cost per trip in USD cij = c · δij R
Trip price/revenues in USD πtij R
Driver net revenue Πt

ij = πtij − cij R

Demand Model
Demand for taxi rides from i to j at t utij R
Poisson parameter for customer arrivals λtij R
Transition probability from i to j at t M t

ij R
Aggregated Poisson parameter λti =

∑
jM

t
ij · λtij R

Discrete categories of δij s {<2,2-4,4-6,>6}
Airport trip indicator (i or j is airport) ι {0,1}
Demand parameter (mean shifter) β0,i,t,s,a R
Demand parameter (price elasticity) β1,i,t,s,a R
Demand parameter (hourly fixed effect) ρht R
Demand parameter (route fixed effect) γi,j R
Demand parameter (idiosyncratic term) ηi,j,t,s,a R

Taxis’ Valuations and Behavior
State space S = {vti , eti} ∀i, t R108×39×2

State vector at time t St ={vti , eti} ∀i R2

Search efficiency αr R
Expected number of matches mt

i R
Match probability pti R
Number of potential airport rides wti R
Driver preference shock εtij R
Driver preference shock scale parameter σε R
Ex-ante value functions V t

i (St) R
Choice-specific value function W t

i (St) R
Driver-specific destination choice ja {1, ..., 39}
Destination conditional choice probability P ti (ja|St) [0, 1]
Policy functions σti = {P ti (j|St)}j∈{1,...,39} R39

Vacant taxi transition kernel Qvacant R39×39×108

Employed taxi transition kernel Qemployed R39×39×108

Total transition kernel Q R39×39×108
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Assumption 1 satisfies a requirement for an exogenous labor supply necessary to compute the

equilibrium level of vacant taxis across time and locations.29

Assumption 2 Taxi drivers have knowledge of the initial state vector S1 and all model pa-

rameters including demand parameters {λti}. Drivers do not observe the specific draws from the

distributions of demand across time and locations.

Assumption 2 indicates a behavioral model in which drivers are unable to observe supply or

demand beyond the particular streets they drive on in one period. This is not necessarily unreal-

istic given real-world line-of-sight constraints and, importantly, offers advantages in computational

tractability.

To solve for equilibrium I use a two-step procedure where in the first step the set of matches,

which I denote by the vector m = {mt
i}, are non-parametrically estimated using trip data. I

estimate matches by computing the mean number of trips originating in each i, t cell for each day

of the month and further apply a 6th-order polynomial smoothing over time of day t to reduce

small sample noise. Equation (4) shows that for any i, t pair, mt
i is sufficient to determine pr(λ

t
i, v

t
i)

solely as a function of the the state variable vti . Given this, the second step is to solve for the

equilibrium state vector conditional on a set of parameters σε, M
t
ij , τij , and Πt

i. This step is the

most involved as it entails solving for equilibrium value functions and policy functions. Hereafter

I denote the equilibrium state as vt∗i (m, σε) to reflect its dependency on these two key parameters.

Computing a dynamic equilibrium in large markets with many states is typically confounded

by the curse of dimensionality. In this setting the problem is mitigated by Assumption 2. This

assumption gives rise to a limited-information equilibrium similar to that of Weintraub et al. (2008b)

and Fershtman and Pakes (2012) in which all agents play strategies and form equilibria without

full knowledge of the payoff-relevant state variables. This allows me to compute policy functions

without keeping track of which drivers are aware of which shocks, and without history dependence

(i.e. 2pm in any particular neighborhood is always valued the same). Drivers therefore play against

beliefs over average values of the state vector. By playing the same equilibrium policies each day,

these beliefs become self-fulfilling in equilibrium.

State transitions are composed of the combined transitions of vacant and employed taxis. Under

the continuum model both of these transitions are deterministic in each period given the prior

period’s matches and vacancies. Given an exogenous initial allocation of all 11,500 taxis in the

market, assumed vacant at time t = 1, drivers compute a single, deterministic equilibrium path

for the state {Sti} for t = {1, ..., T}. Taxi drivers start the day in garages around the city. When

initially arriving to the set of locations in Figure 1, they form an initial distribution of vacant

29The number is data-driven; see Section A.5 for details and additional discussion in Section 5.3.
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supply. Because these locations are unobserved, I approximate this distribution using the empirical

distribution of early morning matches. To compute equilibrium conditional on this initial state, I

devise a numerical algorithm that couples backwards induction and value function iteration. See

Appendix A.8 for computational details and a robustness analysis on the initial condition.

4.2 Model Estimation and Identification

In this subsection, I show that demand parameters {λti}, matching efficiency parameters {αr} and

the scale parameter σε can be identified given the available data. Identification has three steps.

1. I first estimate several objects relating to destination shares, trip times, trip distances, profits,

costs and airport queueing as means over observations in the data. Given these and the

expected matches m = {mt
i} I can solve for the equilibrium state {vt∗i (m, σε)} up to σε

2. I resolve for {vti(m, σε)} given different values of σε, and choose the value that best matches

a set of simulated moment conditions to data.

3. Given estimates of σε and m and the corresponding equilibrium vti , I can identify the ratio
λti
αr

by inverting mr(v
t
i ,
λti
αr

) in its second argument.

I describe each of these steps in more detail below. I then explain how to use the recovered

demand parameters from before and after a fare change to estimate the price elasticities of demand

along different routes. Finally, I describe how I obtain standard errors on model parameters.

4.2.1 Objects Identified Directly from Data

In addition to estimating expected matches {mt
i} as discussed in Section 4.1 , six additional pa-

rameters of the model are identified directly from data:

1. M t
ij is the transition probability of employed taxis in each period and location. In each period,

I record the probability of transition from each origin to each destination conditional on a

taxi matching with a passenger. The mean of these probabilities over each weekday of the

month, computed for each origin i, destination j and hour t, generates expected transition

probabilities M t
ij .

2. τij is the travel time between each origin and each destination. As above, I record the average

of all travel times between each i and j, for each hour t, over all weekdays of the month. I

set min(τii) = 1, so that within-location trips must take at least 1 period.
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3. δij is the distance between each origin and each destination, a component of profits Πt
ij With

the trip distance variable in TLC data, I record the mean distance between each i and j

across all weekdays of the month. Note that δii > 0 since trips can occur within a location.

4. bt2,ij is the idling/waiting time component of the trip price, which is not observed directly. For

each trip, first I compute the distance and fixed component of the fee based on trip distance,

and then take the final price net of taxes and tolls, both of which are observed, and subtract

distance and fixed fees, giving the trip-specific idling time fee. I then take the mean of these

fees across all trips in each origin, destination and hour to obtain bt2,ij .

5. To compute the number of periods a taxi driver expects to wait in the airport queue, I

compute the mean number of pickups per period ρti across each day at each airport as the

expected queue throughput rate and use this to determine the waiting period length as wti =

round(vti/ρ
t
i). This moment is sufficient to determine how drivers value the airport, upon

arrival, as a search location. To estimate demand, I treat the mean number of pick-ups in

each airport location as direct observations of λt38 and λt39.30

6. Finally I compute the cost of fuel per mile c as the average fuel price in New York City in 2012

divided by the average fuel economy in the New York taxi fleet, 29 mpg.31 Using c = $0.124,

I compute the cost of traveling between any origin and destination as cij = c · δij . Note that

δii > 0 implies cii > 0.

After I record the distances between each origin and each destination, I can derive Πt
ij , the

expected profit associated with each possible trip. Recall from equation 2 that Πt
ij = πtij − cij ,

where the regulated fare structure is given by the set {b0, b1, bt2,ij}. With these parameters, and

given data on expected matches by time and location, I can solve for the equilibrium distribution

of taxis up to a scale parameter. Below I describe how solving for equilibrium and using it to solve

a simulated moment estimator allows me to recover the scale parameter. With an estimate of the

scale parameter in hand, I can further recover estimates for demand and matching efficiency.

30Note if airport riders were to wait more than 5 minutes, then due to some per-period constraints on the queue
these estimates may be biased. For example if we let x̄ti be the maximum number of cabs that can clear the queue
and λtLGA > x̄tLGA, the estimate would be truncated at x̄tLGA. To address this, I hold airport prices fixed in all
counterfactuals (and hold the queuing technology fixed). This leaves frictions unchanged from the baseline estimates.
The model estimates of λtLGA nevertheless continue to capture the maximum number of trips attainable by all
airport-located drivers in period t.

31Data come from the New York City Taxi and Limousine Commission 2012 Fact Book and the U.S. Energy
Information Administration. The taxi fleet is approximately 60% hybrid vehicles. Volatility of fuel prices is low in
this period: cost-per-mile fluctuates within a range of $0.01 during the sample period.
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4.2.2 Estimating σε

Since the static profit function is observable, it is possible to test how much drivers depend on

observed versus unobserved factors in making search choices. This is done through the scale pa-

rameter σε, which affects how much drivers’ location decisions are explained by trip profits. To

estimate this parameter, I search for the value of σε that generates an equilibrium state vector

{vti(m, σε)} and corresponding driver-specific moments that are closest to the data.

I rely on four moments to conduct the estimation. The first two moments are the average

trip time and average trip distance from 7a–4p. The second two moments are the per-period

match probabilities in central (region II in Figure 1) and non-central Manhattan. For the first

two data moments I only include drivers whose entire shifts fall within the area of study. Across

all of their trips I compute average trip times and distances. The remaining two data moments

are constructed using the distribution of waiting times across drivers following a drop-off in each

location. The match probability is equal to the proportion of drivers who find a match within five

minutes.32

To generate the corresponding data moments, I fix a value of σε and compute equilibrium

match probabilities and transitions. I then simulate 25,000 driver days worth of trips at equilibrium

probabilities and transitions. With the simulated trips I compute the four analogous moments. I

then employ a simulated method of moments procedure to recover an estimate of σε.

A high-σε equilibrium leads to drivers that are more spread out spatially, as choice probabilities

tend towards a uniform distribution. This leads drivers to choose search patterns that are less

centralized in Manhattan as well as longer trip times and distances since more peripheral locations

are associated with longer trips. In Appendix A.9 I provide additional detail on computing this

parameter.

4.2.3 Estimating λti and αr

In order to estimate λti and αr, I first recover the ratio
λti
αr

. In a slight abuse of notation I will

denote the equilibrium state vector as v∗(m) = {vt∗i (m)}, omitting the explicit dependency on the

scale parameter σε, as this parameter is estimated in the step above. The next proposition shows

how to derive the set of ratios { λ
t
i

αr
} using {vt∗i (m)} by inverting equation 3 at m.

Proposition 4.1. Suppose a vector of expected matches by location and time, m, is observed.

Further, suppose vt∗i (m) 6= 0 ∀i, t. Then the ratio
λti
αr

is identified.

Proof. Equation (3) is strictly increasing in λti/αr given v > 0. Since a strictly increasing function

is one-to-one, it follows that since v∗(m) is unique, via Proposition 3.1 then equation (3) can be

32For example, if the median waiting time across drivers in a location is five minutes, then the average match
probability in one period is 50%.
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uniquely inverted for
λti
αr

:

λti
αr

= −vt∗i (m) · ln
(

1− mit

vt∗t (m)

)
. (10)

Since m is observed and v∗(m) is uniquely determined upon recovering σε, I can compute

the right-hand-side of equation 10 to recover
λti
αr

. The non-zero condition on the state vector is

confirmed by the numerically obtained equilibrium.

To separately identify λti and αr, I develop an estimator based on the daily variance of matches

across days in the sample. Variance in matches will naturally arise from variation in demand

each day.33 To illustrate how match variance can help to identify αr, suppose that matches were

determined by m(λti, v
t
i) =

λti
αr

. Then for a Poisson parameter λti we have V ar(mt
i) = 1

α2
r
V ar(λti) =

λti
αr

1
αr

. Thus by comparing the recovered
λti
αr

and the observed V ar(mt
i), one can uniquely determine

αr.

While the matching function is more complex than the simple example above, the logic is similar;

a higher αr parameter induces lower day-over-day variance in matches. Since match variance is

observed, it is possible to form an estimator for the efficiency parameters – one for each region

– by choosing αr to minimize the distance between the variance in matches in the data and that

produced by the model. This is accomplished with the following estimator:

α̂r = arg min
α

∑
i,t

I(i ∈ r(i))
(
V ar(mt

i(αr))− V ar(m̂t
i)
)2 , (11)

where V ar(mt
i(αr)) denotes the model-simulated variances and V ar(m̂t

i) denotes the variances

computed from data. To compute V ar(mt
i(αr)), I derive an analytic expression based on the

matching function. Recall that the matching function mr(λ
t
i, v

t
i) reports the expected or mean

matches given λti. To recover an expression for the variance of matches, I use the urn-ball matching

function gr(u
t
i, v

t
i) from which the expectation mr(λ

t
i, v

t
i) is derived:

gr(u
t
i, v

t
i) = vti

(
1−

(
1− 1

αrvti

)uti)
. (12)

In Appendix A.9 I show that mr(λ
t
i, v

t
i) = Eu[gr(u

t
i, v

t
i)]. I then obtain an analytic expression

of V ar(mt
i(αr)) = V ar(gr(u

t
i, v

t
i)) by deriving the variance of g(uti, v

t
i) when uti ∼ Poisson(λti) and

33While variation in demand is important to this approach, I note that any unobserved sources of variation, say
due to local demand shocks or unobserved variation in vacant taxis’ supply each day could raise the variance of
matches beyond any variation attributable to demand and search frictions. If such unobserved variation exists, my
estimates αr would imply lower frictions than the true value. Therefore any estimated welfare gains to improving
search frictions can be viewed as a lower bound.
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when vti is constant each day. For this to be credible I require the following assumption:

Assumption 3 The equilibrium level of vacant cabs in each location and time-of-day is invariant

across each day of the month, or V ar(vti) = 0

I substantiate Assumption 3 by simulating the market with and without variance in vacant taxis

to show that it yields nearly identical variance in matches (see Appendix A.9.2). This assumption

implies that, even when there is variation in matches between any two locations due to the variation

in customers, there are enough routes with independent variation that the expected inflow of vacant

taxis each period remains constant each day. The benefit of this assumption is that it allows for

analytically computing the variance of matches and obviates the need for a much more complicated

simulation-based estimator. This assumption together with equation 12 allows me to derive the

following expression:

V ar(mt
i(αr)) =

(
vt∗i
)2
e
−2

λit
αr

1
v∗
it

(
e
λit
α2r

1

v∗2
it − 1

)
. (13)

Proposition 4.2. Suppose Assumption 3 and all assumptions of Proposition 4.1 hold, and suppose

a vector σ2m of the variance of matches by time and location across days is observed. Then {λti}
and {αr} are identified.

Proof.
λti
αr

and vt∗i are obtained as in Proposition 4.1. Denote λ̂ =
λti
αr

, and σ̂2m,it = {V ar(m̂t
i)},

where the variance of matches in each location and at each time is taken across days. Then inverting

equation 21 for αr gives the following estimate:

α̂r =
λ̂it

v∗it(m̂)

(
ln

(
e2λ̂it

(
σ̂2m

v∗2it (m̂)

)
+ 1

))−1

. (14)

With estimates of αr and
λti
αr

, I can recover the demand parameters {λti} directly.

Equation 14 shows that αr is overidentified as each region r is made up of several locations i

and periods t. While α could be treated as i- or t-specific, modeling frictions on the basis of broader

regions obtains more credible results for each αr, as there could be error in the measurement and

estimation of the right-hand-side parameters and moments. I estimate αr by minimizing equation

11 where model variance is determined by equation 13.

4.2.4 Estimating Demand Elasticities

To compute market welfare, I estimate the demand elasticity parameters in equation 1. On Septem-

ber 4, 2012, the distance fee increased by $0.50 per-mile, and the JFK airport flat-fee increased
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by $7. Using September 2012, data, I re-estimate the model for σε, {vt∗i }, {λti}, and {αr}.34 In

the analysis that follows, I use the price variation from this regulatory change to estimate demand

elasticities across different types of trips, where the demanded quantity is the average number of

customer arrivals in each i with destination j at time t given prices πtij .
35

I estimate demand via the following specification:

ln(λtij(π
t
ij)) = β0,s,ι + β1,s,ιln(πtij) + ρht + γij + ηi,j,t. (15)

In a slight abuse of notation I define the index s = s(i, j) as a set of the distance categories as-

sociated with a trip i, j, such that s ∈ {s0, s1, s2, s3} = {0–2 mi., 2–4 mi., 4–6 mi., 6+ mi.}, roughly

corresponding to trip-distance quartiles. The index ι indicates an airport trip, or ι = I(i or j ∈
{JFK,LGA}). Price elasticities β1,s,ι are different for each distance category among trips without

airports, and different for airport trips. I include hourly fixed effects δht and region fixed effects for

drop-off location j and pickup location i.

In this demand system, all customers of a given type s, ι have the same price elasticities. Origin,

destination and time fixed effects capture the heterogeneity of locations: some have more public

transit stations, bus stops, or walkability. Given these fixed effects, identifying variation comes from

the differences in prices before and after the September 2012 fare change. To estimate parameters,

I estimate an empirical analogue of equation 1 for each s category using OLS. Since prices are fixed

within a location and time period, this specification does not suffer from simultaneity bias, unlike

traditional non-instrumented demand models.

4.2.5 Standard Errors

The estimation procedure detailed above requires, for each month, first estimating the scale pa-

rameter σε as well as a set of simple means on matches, travel times, travel preferences, and fares:

{mt
i}, {τij}, {M t

ij}, {Πij}. The remaining parameters are then estimated in a second-stage that is

conditional on the first stage estimates.

To compute standard errors, I re-sample data from the set of day-long blocks of observations.

For example, there are 23 weekdays in the month of August 2012. I draw, at random and with

replacement, from each of these complete days, including all taxi trip data for that day until I

obtain 23 sampled days that I treat as one bootstrap sample. This process incorporates random

34I allow σε and αr to vary by month, as road conditions, traffic patterns, and seasonal weather may change.
35Based on the discussion in Section 3.1, I compute that average waiting times dropped by 21 seconds between

August and September, and in Manhattan the largest drop in location-specific waiting time was 31 seconds. I
therefore assume the changes in waiting times are sufficiently small to be negligible for the demand estimation. My
counterfactuals, however, will incorporate an elasticity of waiting time.
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variation that occurs each day, as modeled in the daily draws of arriving demand, but also allows

for intra-daily correlations in matches across space and time due to the flow of trips.

For each bootstrap sample, I re-estimate the first stage by computing the above empirical means

and by re-estimating σε by simulated method of moments. With first stage estimates, I re-estimate

the second stage parameters. Standard errors are produced by computing standard deviations

over parameter estimates across 150 samples. I conduct this procedure separately for August and

September data.

Table 5: Model Estimates and Equilibrium Results

Panel A: Parameter Estimates Summary

Description Parameter Elements Estimate Std. Err. Avg/Min/Max

Demand (August 2012) {λt,aug.i } 4,212 See Figures A7-A8 52.2/0.79/508.5

Demand (September 2012) {λt,sep.i } 4,212 . 48.4/0.60/415.4
Efficiency, Region I (Aug.) αaug.1 1 0.833 (0.021) n.a.
Efficiency, Region I (Sep.) αsep.1 1 0.776 (0.006) n.a.
Efficiency, Region II (Aug.) αaug.2 1 0.845 (0.015) n.a.
Efficiency, Region II (Sep.) αsep.2 1 0.748 (0.006) n.a.
Efficiency, Region III (Aug.) αaug.3 1 1.126 (0.007) n.a.
Efficiency, Region III (Sep.) αsep.3 1 1.033 (0.006) n.a.
Efficiency, Region IV (Aug.) αaug.4 1 1.069 (0.007) n.a.
Efficiency, Region IV (Sep.) αsep.4 1 0.987 (0.006) n.a.
Driver Shocks (Aug.) σaug.ε 1 2.526 (0.132) n.a.
Driver Shocks (Sep.) σsep.ε 1 3.260 (0.111) n.a.

Panel B: Equilibrium Summary

Estimated Number of Computed
Avg/Min/Max

Object Elements Value

S = {vti} 4,212 (108 × 39) See Figures A7-A8 158.3 / 3.05 / 539.1
{V ti } (non-airport i) 3996 (108 × 37) See Figure A9 $208.7 / $3.73 / $412.31
{V ti } (airport i) 216 (108 × 2) See Figure A9 $214.3 / $3.77 / $651.02

Panel A presents a summary of estimation results from both August and September 2012. Point estimates for
matching efficiency parameters αr correspond to Figure 1 sections I–IV, respectively. Panel B shows computed
equilibrium objects in the August 2012 sample.

5 Empirical Results

This section presents the results of estimation, quantifies the importance of search frictions and

dynamic externalities, and provides estimates of demand elasticities and welfare. Table 5, Panel

A shows estimation results for the Poisson demand parameters {λti}, as well as point estimates by

month for additional parameters σε and each αr. Panel B summarizes the computed equilibrium
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Figure 5: Map of Estimated Supply and Demand: Mean Across t

This figure shows the supply and demand estimates for August 2012 averaged over time-of-day. The left panel shows
the mean estimated per-period customer arrivals and the right panel shows the mean number of vacant taxis.

objects: the supply of vacant taxis across time and locations, {vti}, and the corresponding value

functions {V t
i } at each time and location. Full results are available in Section A.10.

5.1 Spatial Distributions and Intra-day dynamics

Figure 5 depicts supply and demand for taxi rides across all locations, averaged across all periods

of the day. Both taxi supply and passenger demand are most highly concentrated in the central

part of Manhattan. For the most part, the number of vacant taxis is sufficient to meet demand

in the absence of search frictions. The notable exception is in two central regions with very high

demand, where average demand exceeds average supply.

Figure 6 provides an inter-temporal view of the results for two busy locations, Greenwich Vil-

lage/SoHo and Central Midtown. Both graphs depict the equilibrium supply of vacant taxis, the

estimated arrival of customers looking for a taxi, the number of matches as observed in the data,

and a polynomial-smoothed series of these matches. Each series depicts the day shift in five-minute

increments. Panel (a) shows that there are periods of relative oversupply and undersupply (com-

pared to demand) of taxis at different times of day. Panel (b) shows an oversupply of taxis at the

same time where there is an undersupply shown in Panel (a). This simultaneous over-supply and

under-supply illustrates evidence of spatial misallocation as an equilibrium outcome: there is mis-

match across locations, as across Panels 1 and 2. Within-location matching frictions are captured
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(b) Oversupply: Central Midtown

Figure 6: Dynamic Spatial Misallocation Example

This figure shows intra-day results for two example locations. Panel 1 shows the location that encompasses Greenwich
Village and SoHo between Canal Street and 14th Street. Panel 2 is Central Midtown from 37th Street to 59th Street.
Each figure depicts the equilibrium supply of taxis (red, dashed line) and the estimated arrival of passengers (blue,
dot-dash line), compared with the expected number of matches. Matches are shown in two forms: the purple (dotted)
line shows the expected number of matches in each minute, for each location, where the expectation is taken over
days of the month. The yellow (solid) line fits a sixth-order polynomial to smooth matches over time. Each point
depicts the over- or under-supply of taxis relative to demand in each 5-minute interval from 8am until 4pm.

as the vertical space between the minimum of supply and demand at any point (i.e., min{vti , λti})
compared with matches (i.e., mt

i). I present results for more locations in Appendix (A.10).

The movement of hired and vacant taxis alike shifts the spatial distribution of vacant capacity

across space. Figure 7 shows how these two types of spatial flows relate to each other. It aggregates

taxi supply across all 39 locations into five regions (identical to those in Figure 1) and depicts the

net flow of matches by region, defined as the sum of drop-offs minus pick-ups in each location,

summed across all locations in each region. Panel (b) shows the net flow of taxis due to vacant

taxis’ location choices by region. In the first half of the day employed taxis are traveling into

Midtown and out of most other regions, while at the same time vacant taxis are proportionally

exiting Midtown. Across the day, the choices of vacant taxis almost perfectly offset the movement

of employed taxis. This pattern arises from drivers’ time- and location-specific policy functions

which maintain a near-equality of equilibrium value functions across locations in each period.

5.2 Externalities

To demonstrate how the movement of vacant taxis shifts the incidence of matches and welfare across

the day, Table 6 computes the expected impact, across a single day, of reallocating a single vacant

32



8a 10a 12p 2p 4p

-300

-200

-100

0

100

200

300

H
ire

d 
T

ax
is

Lower Manh.
Midtown
Uptown
Brooklyn
Airports

(a) Net Matches

8a 10a 12p 2p 4p

-300

-200

-100

0

100

200

300

V
ac

an
t T

ax
is

Lower Manh.
Midtown
Uptown
Brooklyn
Airports

(b) Net Choices

Figure 7: Equilibrium Flow of Matches and Vacant Taxi Choices by Region

This figure shows the net flow of matches and vacant taxis for August 2012. The top panel shows the net flow of
matches, defined as the sum of matches with destinations into each region minus the sum of pick-ups headed out of
each region. The bottom panel similarly shows the net movement of vacant taxis into and out of locations within
each region. Positive values therefore reflect a net inflow of vacant cabs in each location due to taxis dropping off
customers (in Panel I) and previously vacant cabs (in Panel II).

taxi between two regions at 9am. This reallocation is done relative to the baseline equilibrium

distribution of vacant taxis. Example 1 shows that swapping one taxi from Brooklyn to Midtown

will, on average, generate more matches in Midtown and Uptown regions at the expense of all

other regions. The effect is driven not just by changes in the 9am stock but the subsequent

movements of the reallocated taxi. Welfare is also impacted; in Example 1, the net effect of

this single unit reallocation is around $50 per day.36 Example 2 shows a reallocation with a

nearly-neutral aggregate impact on matches and welfare, moving one unit from Midtown to Lower

Manhattan. Finally, Example 3 shows that a reallocation from Lower Manhattan to JFK airport

leads to a net reduction in matches and welfare.

Figure 8 shows the expected change in matches over time due to the same three examples. The

top row shows the change in matches by region in the first two hours following each reallocation.

The bottom row shows the net impact across the entire day. The expected impact dissipates in

about one to two hours. This diffusion is a natural consequence of the period-by-period randomness

in both customer destinations and subsequent search patterns. Taken together, this exercise shows

that the externality is relatively short lived by up to two or three hours, but that the net effects are

not trivial. The existing equilibrium is also not efficient. This result further motivates the question

36Welfare definitions and calculations are discussed in detail below.
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Table 6: The Effect of Repositioned Vacant Taxis by Region: Examples

Description Effect Region I Region II Region III Region IV Region V Overall

Ex 1: Send 1 Brooklyn (36)
taxi to Midtown (12)

Net ∆ in Matches -2.0 2.3 2.7 -1.3 -0.3 1.3
Net ∆ in Welfare ($) -19.34 23.59 32.03 12.03 0.00 48.32

Ex 2: Send 1 Midtown (11)
taxi to Lower Manhattan (5)

Net ∆ in Matches 2.3 -0.9 -1.5 0.0 -0.0 -0.1
Net ∆ in Welfare ($) 16.15 -9.73 -18.35 0.24 0.00 -11.69

Ex 3: Send 1 Lower
Manhattan taxi (5) to JFK

Net ∆ in Matches -3.6 -3.3 0.6 0.3 1.3 -4.8
Net ∆ in Welfare ($) -26.30 -31.60 5.76 -0.85 0.00 -52.99

This table shows the marginal effect of switching the location of one taxi between two locations, as indicated, at 9am.
The marginal impact on the number of trips and consumer welfare is the sum of all resulting subsequent matches up
to 4pm net of the baseline equilibrium.

of how to properly price customer trips accounting for these spillovers and how to incentivize drivers

to locate themselves efficiently when vacant.

5.3 Frictions

The estimated results also allow for assessing the impact of search frictions within and across

locations. Aggregate excess demand over the course of a day-shift is given by
∑

i,t

(
λti −mr(λ

t
i, v

t∗
i )
)
.

Total daily demand is for 249,552 trips whereas total matches in the data are 196,099, implying

that 53,453 demanded customer trips are unmet each day, or an average 494 unmet trips each

period. This contrasts with an average of 5,759 taxis that are vacant in each period, suggesting

substantial frictions on both sides of the market.

I further decompose search frictions by attributing unmet demand to within-location and across-

location frictions. Within-location frictions are due to an imperfect matching technology – in this

case, searching on the street. These frictions are measured by
∑

i,t

(
min(λti, v

t∗
i )−mr(λ

t
i, v

t∗
i )
)
,

where the first term reflects frictionless matching. These are frictions that can be directly miti-

gated with better technology, for example through app-based ride-hail platforms. Within-location

frictions amount to 40,038 unmet passengers, or 75% of the total number of unmatched passen-

gers. The remaining 13,415 unmet trips are due to spatial mismatch between vacant drivers and

passengers. Even with better technology, these frictions exist when supply and demand are farther

apart and thus not readily matched. This residual mismatch highlights the possibility of pricing

inefficiencies, as supply and demand distributions are functions of price. An equilibrium analy-

sis of changes to matching technology is examined in Section 6. In Appendix A.10 I discuss the

robustness of these results to Assumption 1, that the aggregate supply of cabs is equal to 11,500.
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(b) Midtown to Downtown
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(c) Downtown to JFK

Figure 8: Dynamic Response of One Repositioned Vacant Taxi: Examples

This figure shows the dynamic effect of switching the location of one taxi between two locations at 9am. Example 1
captures the effect of moving one vacant Brooklyn taxi (location 36) to Midtown Manhattan (location 11). Example
2 moves one Midtown taxi (location 11) to Lower Manhattan (location 5). Example 3 moves one Lower Manhattan
taxi to JFK airpot (location 39). Each example corresponds to those in Table 6. The change in the number of trips
is net of the baseline equilibrium.

5.4 Demand Elasticities

As outlined in Section 4.2.4, I first estimate the taxi equilibrium model separately for August 2012

and September 2012 following a change in the regulated tariff. Estimates of location-specific demand

λti and the destination shares M t
ij allow for constructing destination-specific demand parameters

as λtij = λti ·M t
ij , where λti and M t

ij are obtained separately for each month. I then leverage the

change in prices over this period to identify price elasticities across trips of differing lengths. By

predicting λtij under new prices based on these estimates, I can construct new predictions for both

total demand λti and trip shares M t
ij . Table 7 reports price elasticities of passenger arrivals between

-1.07 to -2.22, where shorter trips are more price elastic than longer ones. This is not surprising as

short distances tend to be better connected with public transit and more walkable, thereby offering

more possible substitutions with taxi service.

I compute welfare by first integrating demand over q ∈ [0, λtij ] for each combination of origin,
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Table 7: Estimation results: Demand Elasticities for Non-airport Origins

Description
Trip Type

0-2 mi. 2-4 mi. 4-6 mi. >6 mi. Airport Trips

Price Elasticity
−2.220∗∗ −1.986∗∗ −1.684∗∗ −1.074∗∗ −1.131∗∗

(0.082) (0.104) (0.149) (0.222) (0.055)

Pickup Location FE X X X X X
Drop-off Location FE X X X X
Time-of-Day FE X X X X X
Pickup Region × Hour FE X X X X X
Time Trend X X X X X

N 99,336 87,012 60,960 48,396 16,848
R2 0.905 0.860 0.864 0.816 0.919

Standard errors in parentheses, ** p<0.01

Demand data come from model estimates. An observation is an arrival-rate of customers within an origin-location,
destination-location, and five-minute period during a weekday from 7a–4p. The dependent variable is log(λtij) and
the independent variable of interest is log(πtij). Columns 1–4 report estimates for trips within non-airport locations.
Column 5 reports estimates for trips that begin in a non-airport location and end at an airport. Standard errors are
clustered at the level of origin-location.

destination and hour. From this measure, welfare accrues only to the fraction of customers served,

or mt
i(λ

t
i, v

t
i)/λ

t
i.

37 I illustrate these calculations in Figure 9. The area A ∪ B reflects the entire

available surplus in this market at price pti . The area B is the lost surplus due to frictions and

random matching. A is therefore the realized welfare for each sub-market (i, j, t). Note that A is

an equilibrium object due to its dependency on πtij and mt
ij . Since elasticity estimates are obtained

locally to the price variation, estimating consumer welfare at high prices involves extrapolation far

out of sample. To ensure that welfare valuation is not driven by these observations I implement a

choke price of π̄ = $100. Aggregate welfare is then computed as
∑

i,j,tAijt(π0) where π0 reflects

trip prices in each i, j, t sub-market given the observed tariff pricing.

Total estimated welfare for each weekday, day-shift is shown in Table 8. Consumer welfare for

New York taxi service is $2.45M per day-shift. Taxi profits are $3.27M, or $284 per driver.38 There

is substantial heterogeneity by time, place and trip length. For example, hourly consumer surplus

increases from morning to afternoon. The consumer welfare and profits accrued from trips in

Manhattan are vastly higher than those in Brooklyn, and shorter trips make up the bulk of welfare

and profits. This variation suggests that if different pricing regimes affect the spatial allocation of

supply and demand, then we should expect them to also impact aggregate welfare.

37I provide explicit formulas in Appendix A.11.1
38Drivers also must pay a leasing fee imposing costs-per-shift of around $100-125 per day, for which detailed data

were not available. Including these fees implies daily profits around $160 to $180.
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Figure 9: Consumer Surplus with Frictions

This figure illustrates how welfare is calculated in each sub-market (i, j, t) under random matching.

Table 8: Estimated Results: Daily, Single-Shift Welfare Measures

Subset Type Subset
Cons. Surplus Taxi Profits Matches
($, thousand) ($, thousand) (thousand)

Aggregate - 2452.6 3273.6 211.3

By Time-of-day

7a-9a 344.1 561.1 34.7
9a-11a 604.2 779.2 50.9
11a-1p 534.8 734.5 48.1
1p-4p 969.4 1198.8 77.5

By Origin Region

Sec. I 471.1 626.9 36.6
Sec. II 1164.0 1535.7 100.9
Sec. III 760.4 1008.6 64.4
Sec. IV 57.2 102.4 4.6

By Trip-Length

0-2 mi. 1137.9 1481.6 124.0
2-4 mi. 836.6 1013.2 58.6
4-6 mi. 292.7 348.8 14.0
6+ mi. 185.4 430.1 14.7

This table depicts welfare measures decomposed by category. Consumer welfare is summed across all i, j, t in each
category. I compute taxi profits from total matches multiplied by prices for each origin, destination, and time-of-day.
Profits reflect daily, single-shift revenues net of fuel costs. Sections I–V refer to those in Fig. 1.

6 Counterfactual: Pricing for Dynamic Efficiency

As the above results show, uniform pricing across heterogenous demand will lead to inefficient

allocations of service. Mis-pricing inefficiencies may be further amplified by the inter-dependency in

allocations from one period to the next. This section studies a set of simple and easily implemented

changes to existing tariffs in the New York market with the purpose of generating better welfare
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outcomes consistent with the equilibrium dynamics of supply and demand. The changes introduce

price flexibility with respect to location, time-of-day, or distance. Flexibility along these dimensions

plays two important roles. First, it offers the efficiency of a price mechanism to better clear markets.

Second, flexible prices can lead to an endogenous spatial re-allocation of empty capacity to different

regions of the city. I show that it is possible to increase both profits and consumer welfare by

optimally implementing each type of flexible tariff.

To study flexible tariffs, I create three possible regimes: location-based pricing, time-based

pricing and distance-based, or non-linear pricing. In the first regime, I allow prices to vary in

segments of 2–3 hours across the day (the four segments are 7a–9a, 9a–11a, 11a–1p, 1p–4p). In

the second, I allow prices to vary in each of the four regions I–IV in Figure 1. The third considers

non-linear pricing, where prices can vary along three dimensions: the fixed fare, the per-mile fare,

and a squared-distance fare. For each, I search across a set of multipliers to existing fares associated

with each combination of origin, destination and time.39 A description of each is outlined in Table

9. For each candidate set of new prices, I recompute origin-destination-specific demand, profits,

and transitions, and I resolve the dynamic spatial equilibrium among taxis. This method uses

estimated demand parameters to recompute both the level of demand in each location as well as

the share of destinations demanded from within each location.

To account for the potential impact on consumers due to changing wait times, I calibrate

waiting time elasticities to be -1.0, close to the estimates of Frechette et al. (2019) and Buchholz

et al. (2020).40 I compute a measure of waiting time as the mass of unmatched consumers in

each period multiplied by the period length. Given these two measures I endogenize the demand

response with respect to the percentage change in waiting times, which I compute as the percentage

difference between the waiting time at baseline prices and the waiting time at any counterfactual

price. I provide details of this procedure in Appendix A.11.1.

Within each flexible price regime, I numerically solve for an optimal configuration according

to three different criteria: maximize total surplus, maximize consumer surplus, and maximize the

total number of trips. The different criteria represent different planner objectives. In addition, I

construct two benchmark counterfactuals in order to compare the new pricing regimes with two

possible technological advances without re-pricing. One represents a frictionless matching technol-

ogy, where nearby drivers are always matched to customers without searching. This technology

is representative of modern app-based matching that matches taxis with consumers when they

39For example, if at the fare structure of $2.50 + $2.00/mile, a trip from location i to j costs $10.00, a multiplier
of 0.8 on trips from i to j would change this fare to $8.00.

40Without waiting time elasticities, optimal prices would be driven very low as consumer surplus would grow
faster than profits are lost under a fixed total supply, yet the probability of finding a taxi would also approach zero.
Since the empirical evidence points to elastic responses, I do not solve for this pathological case. To measure the
importance of the calibration, Appendix A.11.4 replicates the same analysis under alternative calibrated values.
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Table 9: Description of Counterfactual Policies and Multipliers

Counterfactual Regime Multiplier Description Example

Location-Based Pricing θk · qtij for i ∈ Region k
θ2 = 0.85⇒ 15% discounted baseline price
qtij for trips starting in Region II

Time-Based Pricing
θk · qtij for t ∈ kth element of θ2 = 0.85⇒ 15% discounted baseline price

{7-9a, 9-11a, 11a-2p, 2-4p} qtij for all trips during 9-11a

Non-Linear Pricing θ0 · flag fare + θ1 · dist. fare + θ2 · dist.2
θ1 = 0.9, θ2 = 0.9, θ3 = −0.1⇒
new fare = $1.80 + 2.25/mi.− 0.1/mi2

This table details the three sets of tariff pricing rules considered in the counterfactual analysis. Prices are denoted
qtij and refer to the baseline fare price for a trip from i to j at time t, where the baseline price is set at August 2012
levels of $2.00 fixed fare + $2.50 per-mile.

are close to each other. The other technology is that of a social-planner as dispatcher, in which

vacant cabs are directed to search in the areas where their expected contribution to total welfare

is highest. This technology represents dynamically efficient search, whereas frictionless matching

represents statically efficient search.

6.1 Results

Table 10 displays the dynamically efficient tariffs associated with location-, time- and distanced-

based fares. Nearly all prices fall by around 10–20% in each regime. Even then, driver profits

improve as utilization rates increase by 7–10%. Total welfare gains up to 4.0% and consumer

welfare gains up to 9.3% are possible. The best regime offers $193 thousand per day in welfare

improvements or about $0.91 per trip. Interestingly, different planner objectives within a price

regime mostly coincide: under each of the three tariff structures, essentially the same set of optimal

prices maximize both total surplus and consumer surplus. All regimes also improve taxi utilization

rates, highlighting the role of flexible prices in allocating spare capacity to more productive areas.

Each of these, however, gives a higher share of welfare to consumers by around 2–3%. Finally,

matches rise by more than welfare, as lower average prices introduce more marginal consumers to

the market.41

The final two rows of Table 10 contrast these results with a set of two benchmark counterfactuals

representing different technology improvements. First is Efficient Incentives (EI) in which drivers’

profit motives are replaced by search incentives that are socially optimal, holding fixed prices and

matching technology. This scenario is akin to one in which a planner dispatches vacant cabs to

41The results corroborate theoretical insights of Schmalensee (1981) and Varian (1985) which find that a necessary
condition for price discrimination to enhance social welfare is that it accompanies an increase in output.
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locations with the highest social value. To compute the EI equilibrium, I replace drivers’ profit

functions in each location and at each time point with the marginal social welfare function.42 By

solving equilibrium, vacant drivers will allocate themselves according to socially efficient incentives.

The second is Matching Technology (MT), where prices are equal to the baseline tariff but the

matching technology is frictionless and given by m(λti, v
t
i) = min(λti, v

t
i). This case approximates

a modern ride-share platform, where supply and demand in the same location are guaranteed

to match, but taxis must still choose locations to search.43 Consumer welfare benefits from this

technology are somewhat larger than the benefits to optimal pricing and much better for taxis.

The pricing counterfactuals offer a combination of improved search incentives and more effi-

cient trip pricing. Compared to the EI counterfactual, optimal pricing can attain about half of the

consumer welfare gains. Since optimal pricing causes a drop in prices, taxi drivers do substantially

better with the EI technology. Because under EI the market is still constrained by inefficient match-

ing, the MT counterfactual illustrates even more impressive gains; frictionless matching generates

predictably large benefits and provides a rationale for the success of modern ride-hail services.

The best performing tariff I study attains about 57% of the consumer benefits of EI and 42%

of MT. Interestingly, MT generates only slightly more matches than the optimal tariff and EI even

less; lower average prices under the new tariffs induce many more additional customers to enter the

market despite lower wait times induced by EI and MT. It is noteworthy that the EI technology

leads to slightly higher utilization than MT. Each of the benchmark technologies and all pricing

counterfactuals are to some extent implementable in the real-world. However, pricing is simpler

and does not require sophisticated tracking and dispatching systems.

6.2 Discussion: Comparing Tariff Changes with Real-time Pricing

The pricing counterfactuals in Table 10 are configured to average patterns of supply and demand.

Implementing this type of price regime would not require any special technology; the regulator could

simply post new tariffs that differ by time or location, both of which have been applied in various

cities, such as a zone-based pricing system used in Washington, D.C. In contrast, a common feature

of ride-hail platforms is to use real-time pricing (e.g., Uber’s “Surge Pricing”). Real-time pricing

re-adjusts prices in each period to accommodate unexpected shifts in supply or demand. However,

conventional real-time pricing is not forward-looking. If it were, then my approach in the analysis

above would apply. Nevertheless, better average pricing of the form indicated in Table 10 may

enable the regulator to alleviate some of the need for additional real-time pricing, as supply and

42For example, if a location under consideration by a driver has 15 taxis, the profit to search in that location is
the expected gain in social surplus by adding a 16th taxi, including both the matching friction as well as the value
of all possible trips that could be generated from there.

43Note that this counterfactual does not simulate gains from other attributes of ride-sharing services such as the
value of less waiting, the certainty of a match, app-based payments, etc.
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Table 10: Efficient Pricing and Technology: Counterfactual Results

Type
Efficiency-optimized Total Consumer Consumer

Matches
Taxi

Multipliers Surplus Surplus Rent Share Utilization
θ1 θ2 θ3 θ4 (,000 USD) (,000 USD) (percent) (,000) (percent)

Baseline - 8/2012 1.00 1.00 1.00 1.00 5726.2 2452.6 42.8 211.3 42.2

Location-Based Pricing

Max Total Surplus 0.83 0.87 0.72 1.25 5886.2 (+3.3 %) 2628.9 (+7.2 %) 44.7 257.3 (+23.0 %) 51.6
Max Cons. Surplus 0.83 0.86 0.72 1.25 5885.2 (+3.3 %) 2642.1 (+7.7 %) 44.9 257.6 (+23.1 %) 51.6
Max Matches 0.87 0.87 0.65 1.25 5849.0 (+2.7 %) 2604.5 (+6.2 %) 44.5 260.4 (+24.5 %) 51.9

Time-Based Pricing

Max Total Surplus 0.88 0.90 0.84 0.81 5876.4 (+3.4 %) 2640.5 (+7.9 %) 44.9 246.0 (+17.8 %) 49.9
Max Cons. Surplus 0.88 0.90 0.84 0.81 5876.4 (+3.4 %) 2640.5 (+7.9 %) 44.9 246.0 (+17.8 %) 49.9
Max Matches 0.67 0.87 0.87 0.89 5781.0 (+1.7 %) 2544.9 (+4.0 %) 44.0 253.4 (+21.4 %) 49.8

Non-Linear Pricing

Max Total Surplus 1.00 0.72 -0.25 . 5919.5 (+4.0 %) 2674.3 (+9.1 %) 45.2 242.5 (+16.0 %) 51.9
Max Cons. Surplus 1.00 0.71 -0.25 . 5919.4 (+4.0 %) 2679.5 (+9.3 %) 45.3 242.8 (+16.2 %) 52.0
Max Matches 0.65 1.24 0.20 . 5740.0 (+0.9 %) 2499.6 (+2.0 %) 43.5 258.5 (+23.7 %) 49.1

Technology Improvement (at baseline prices)

Efficient Incentives . . . . 6686.0 (+16.8 %) 2850.8 (+16.2 %) 42.6 247.3 (+17.1 %) 52.7
Matching Technology . . . . 6949.8 (+23.5 %) 2869.4 (+22.0 %) 41.3 262.7 (+24.4 %) 51.9

This table shows, for each weekday day-shift, the estimated change in total welfare (profits plus consumer surplus),
consumer surplus, consumers’ share of total surplus, total matches, and utilization rates across each counterfactual
price policy. Each pricing policy shown is a rule that applies to four policy-specific multipliers on the baseline price pijt
for every route, given by $2.50 + $2.00/mile. In location-based pricing, the multipliers θk(i) apply to pijt where k(i) ∈
{1, 2, 3, 4} indexes regions r. In time-based pricing, the multipliers θk(t) apply to pijt where k(t) ∈ {1, 2, 3, 4} indexes
the time ranges of 7a–9a, 10a–11a, 12p–1p, 2p–4p. In non-linear pricing, the multipliers θk(i, j) apply to pijt where
k(i, j) ∈ {1, 2, 3} are coefficients that change existing tariffs according to θ1 · base fare + θ2 · fare per-mile + θ3 ·miles2.
The final rows depict outcomes under two simulated technologies, computed at baseline prices.

demand will be more efficiently allocated across space and time, limiting the types of imbalances

for which surge prices are designed to accommodate.

7 Conclusion

Supply and demand in the taxi market are uniquely shaped by space. Price regulations influence

how taxis and their customers search for one another and how often they find each other. This

paper models a dynamic spatial equilibrium in the search and matching process, showing how

both supply and demand can be recovered from high-frequency trip data. Using data from New

York, I estimate this model to recover the expected spatial and inter-temporal distribution of taxis

and mean customer arrivals. Exploiting a change in regulated pricing, I estimate demand every 5

minutes across 39 neighborhoods and measure the distribution of search frictions across time and

space. I show that total welfare attained in the New York market is $5.7 million per day-shift on

a typical weekday with about 43% of this surplus accruing to consumers.
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The estimated model also allows me to recompute the equilibrium taxi supply, spatial matches,

search frictions and welfare outcomes under alternative price schedules and a frictionless match-

ing technology. I show that by optimally configuring tariffs to vary according to spatial regions,

vacant taxi capacity is endogenously relocated where it is valued the most, providing up to 7.7%

more welfare and 24% more trips. A more sophisticated tariff could offer different prices across a

combination of location, time and distance. These counterfactual estimates suggest that additional

gains might be possible in such a regime, although they would come at the expense of simplicity.

The gains in matches due to optimal dynamic pricing are comparable to the gains due to a perfect

static matching technology and superior to a setting in which drivers search according to efficient

incentives, underscoring the importance of pricing even among modern ride-hail platforms.
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A Appendix

A.1 Data Cleaning

Taxi trip and fare data are subject to some errors from usage or technology flaws. I first drop

any apparently erroneous observations (e.g. well outside of the New York Area). Next, I drop

observations outside of the locations of interest, Manhattan and the two airports. This section

describes how data are cleaned and provides some related statistics.

Data Cleaning Routine

1. Begin with merged trip and fare data from August 2012 to September 2012.

2. Drop observations outside of USA boundaries.

3. Drop observations outside of the New York area.

4. Drop duplicates in terms of taxi driver ID and date-time of pickup.

5. Drop observations outside of Manhattan (bounded above by 125th st.) or either airport.

6. Drop observations that cannot be mapped to any of the 39 locations in Figure 1.

Table A1 shows the incidence of each cleaning criterion.

Table A1: Data Cleaning Summary

Procedure Criterion Applied Obs. Change

Drop Errors

1. Initial data 28,927,944
2. Obs. outside USA -749,623
3. Obs. outside NYC -5,298
4. Drop duplicates -57

Drop Unusable Data
5. Keep manhattan + airports -3,622,803
6. Un-mapped data -117,249

Final Data Set: 24,432,914 observations

This table summarizes the data cleaning routine for TLC data from 8/1/2012-9/30/2012.

A.2 Map Preparation

I generate the 39 spatial locations shown in Figure 1 by uniting census tracts, representing 98% of

all taxi ride originations. While there is some arbitrariness involved in their exact specification, the

number of locations used is a compromise between tradeoffs; more locations give a richer map of
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spatial choice behavior, but impose greater requirements on both data and computation. Because

of the sparsity of data in the other boroughs, I focus on the set of locations falling within Manhattan

below 125th street, three nearby areas within Brooklyn and Queens, and the two New York City

airports, Laguardia and J.F.K.

The following graphics show how I convert raw GPS data points into locations.44 I begin

with New York census tracts, 425 of which cover the locations of interest. From these, I examine

taxi activity, and group census tracts into areas with clusters of activity. Figure A1 shows the

origin of each trip in a 10-percent sample of TLC data. It can be seen that trip origins are most

heavily concentrated around major streets, particularly north-south and diagonal thoroughfares

in the north, with more scattered origin points in Lower Manhattan and Midtown Manhattan.

The densest neighborhoods are clearly those in Midtown. I have grouped census tracts to form

locations in a way that attempts to minimize the number of location boundaries that overlap

clusters of activity, for example the clusters around a busy transit station.

Figure A1: Mapping GPS points to Locations

This figure shows TLC data for a 10 percent sample of taxi trips taken in August 2012. Each dot on the map is the
GPS origin of a trip.

44This association is achieved via the point-in-polygon matching procedure outlined in Brophy (2013).
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A.3 Additional Summary Statistics

This sub-section provides additional descriptive information about taxi trips. Table A2 decomposes

the trip and fare summary statistics by month, before and after the fare change.

Table A2: Taxi Trip and Fare Summary Statistics by Month

Sample Rate Type Variable Obs. 10%ile Mean 90%ile S.D.

Weekdays,
Day-Shift,
Manhattan &
Boro.
(Aug. 2012)

Standard
Fares

Total Fare ($) 4,299,474 4.50 9.20 15.7 5.46
Dist. Fare ($) 4,299,474 1.04 4.19 8.96 4.66
Flag Fare ($) 4,299,474 2.50 2.5 2.5 0
Distance (mi.) 4,299,474 0.72 2.29 4.68 2.34
Trip Time (min.) 4,299,474 4.00 12.24 22.48 7.95

JFK Fares

Total Fare ($) 81,493 45 45 45 0.75
Distance (mi.) 81,493 4.0 16.28 20.94 5.91
Trip Time (min.) 81,493 28.00 46.01 66.00 18.44

Weekdays,
Day-Shift,
Manhattan &
Boro.
(Sep. 2012)

Standard
Fares

Total Fare ($) 3,823,041 5.00 11.23 19.70 7.15
Dist. Fare ($) 3,823,041 1.20 5.17 11.00 5.89
Flag Fare ($) 3,823,041 2.50 2.5 2.5 0
Distance (mi.) 3,823,041 0.70 2.27 4.65 2.38
Trip Time (min.) 3,823,041 4.12 13.30 25.0 9.01

JFK Fares

Total Fare ($) 82,244 52.00 51.56 52.00 1.96
Distance (mi.) 82,244 9.11 16.54 20.98 5.63
Trip Time (min.) 82,244 28.00 46.69 68.75 18.35

Taxi trip and fare data come from New York Taxi and Limousine Commission (TLC). This table provides statistics
related to individual taxi trips taken in New York City in the months of August 2012 and September 2012 for two
fare types. The first is the standard metered fare (TLC rate code 1), in which standard fares apply. The second is a
trip to or from JFK airport (TLC rate code 2). Total Fare and Distance data are reported for each ride. While not
reported directly or separated from waiting costs, I predict distance and flag fares using the prevailing fare structure
on the day of travel and the distance travelled.

Table A3 summarizes how cabs move around space. Panel (a) aggregates all passenger trips into

Regions and all times of day to display the density of employed-taxi transitions between regions.

This matrix represents customer preferences for travel. At the end of a trip, taxis become vacant

in these new regions. Panel (b) displays the observed location of a matched taxi, at the start of a

ride, conditional on the last observed location of the same taxi, at the previous drop-off location.

Thus Panel (b) reveals the transition of vacant cabs, though not accounting for period-by-period

choices – only the eventual location of the next pickup. As I will show, an equilibrium estimate of

drivers’ period-by-period spatial choices closely mirrors the pattern of Panel (b), but with higher

frequency weights put on same-location transitions. The difference occurs because drivers search

on average for 2.5 periods before finding a passenger. The ride-to-ride transitions are therefore

more dispersed.
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Table A3: Observed Pickup and Drop-off Activity by Region

Destination
Region I Region II Region III Region IV Region V

O
ri

gi
n

Region I 0.357 0.152 0.060 0.230 0.102
Region II 0.484 0.623 0.444 0.251 0.295
Region III 0.102 0.185 0.471 0.144 0.103
Region IV 0.035 0.012 0.010 0.332 0.102
Region V 0.022 0.027 0.015 0.042 0.398

(a) Passenger Trips

Destination
Region I Region II Region III Region IV Region V

O
ri

g
in

Region I 0.762 0.061 0.014 0.221 0.062
Region II 0.183 0.775 0.131 0.117 0.131
Region III 0.029 0.141 0.834 0.149 0.186
Region IV 0.010 0.007 0.007 0.371 0.091
Region V 0.015 0.016 0.014 0.141 0.531

(b) Vacant Transitions

This table summarizes transitions in the TLC data. Data in the table are aggregated to the regions from Figure 1.
Panel (a) depicts the transition density of taxi-passenger matches and Panel (b) depicts the transition of vacant taxis
between each drop-off and the same driver’s subsequent pickup.

A.4 Additional Detail on September 2012 Fare Hike

Section 2.3 highlights the impact of the September 2012 fare hike on average fares and total trips

by trip distance. In this subsection I show the impact on trips by route instead of distance. Table

A4 splits all trips into origins and destinations across the five aggregate regions depicted in Figure

1. This table shows that the average increase in fares paid following the fare hike varied between

about 15% to 23%. The lowest increase occurred across airport routes, where the JFK flat-fare

only increased by 15%, and in shorter routes in which origin and destination regions were the same.

The decline in matches across routes follows a similar but less consistent pattern. Since matches

are formed by changes in both supply and demand, these patterns are difficult to predict in the

absence of an equilibrium model.

Table A4: Route-Specific Effects of the Fare Hike

Destination
Region I Region II Region III Region IV Region V

O
ri

gi
n

Region I 0.149 0.183 0.204 0.177 0.160
Region II 0.184 0.159 0.211 0.211 0.164
Region III 0.221 0.231 0.181 0.224 0.161
Region IV 0.157 0.186 0.207 0.167 0.174
Region V 0.160 0.168 0.161 0.202 0.085

(a) Average Fare Response

Destination
Region I Region II Region III Region IV Region V

O
ri

g
in

Region I −0.129 −0.173 −0.112 −0.123 −0.140
Region II −0.157 −0.225 −0.178 −0.180 −0.130
Region III −0.185 −0.222 0.002 −0.226 −0.217
Region IV −0.136 −0.233 −0.104 −0.111 −0.203
Region V −0.096 −0.108 −0.194 −0.213 −0.397

(b) Average Trip Response

This table shows the mean change in log fares and log number of trips following the September 4, 2012 fare hike. Fare
calculation includes base fares, taxes, surcharges and imputed tips. Data in the table are aggregated to the regions
from Figure 1. Panel (a) depicts the impact on average fares and Panel (b) depicts the impact on average number of
trips by location.

A.5 Medallion Counts

Figure A2 shows the unique number of medallions observed each day of August and September

2012 in the TLC data during weekdays during the day shift. The mean across all days is 11,911.88.
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It should be noted however, that about 2% of trips occur outside of the 39 locations defined in

this paper during this period. This implies that approximately 11,673 medallions are active within

the locations, with some additional diminishment in reality due to breaks, refueling, etc. The

second point of this figure is that the medallion counts seem fairly stable between price changes,

lending support for the assumption that this overall level remains constant. The drop on September

3rd seems to reflect the extra servicing of metering equipment just prior to the tariff change on

September 4th.
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Figure A2: Medallions per day, Aug-Sep 2012

This figure depicts the unique number of medallions observed each day of August and September 2012 in the TLC
data during weekdays during the day-shift.

Figure A3 illustrates the time-of-day appearance of medallions by showing the number of active

taxis by hour beginning at 6am. To compute this, I first calculate the hours in which a taxi is

on a shift by using the shift definition common in the literature. This definition specifies that a

driver is on a shift when he shows up in the data (i.e., a ride is given by the driver) and remains

on shift until a gap of five or more hours between observed rides occurs. Next, I count how many

taxis are working a shift in each hour and plot this count by hour. Note that levels shown will

be smaller than the total medallion count of 13,237. One reason is that a driver will not appear

immediately upon starting a shift, as it takes time to find passengers. As a result there may be

significant downward bias in the mornings.

A.6 Details on State Transitions

The combined set of transitions forms an aggregate transition kernel that defines the law-of-motion,

given by Q(St+1|St) = Qemployed(et+1
i |eti,M t,mt) + Qvacant(vt+1

i |vti , σt). Here I use addition in-
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Figure A3: Total medallion activity by hour

This figure is derived from August 2012 TLC trip data. It shows the number of unique medallions present in the data
by hour-of-day, where presence is determined by finding the first- and last-appearance times within the day-shift,
and counting each taxi as active in the hours between (inclusive of end-points). It approximates the total number of
taxis working during the day shift, by hour, averaged across each day in the data set. Note that earlier hours will be
systematically downward biased because drivers who begin a shift are not observed until finding their first passenger.

stead of union notation to signify that the transitions of both employed and vacant cabs lead to

new stocks of vacant cabs.

Let the following objects be defined:

et be the (L + K) × 1 vector of employed cabs at the start of period t, where L is the total

number of search locations and K is the total number of positions between locations (e.g., if a

route takes 4 periods to travel, there is a pickup-location i, 2 in-between positions, and a drop-off

location j). mt is the (L + K) × 1 vector of matches in period t, where the first L entries are

the matches in each location and the next K entries are zeros (as no matches occur while cabs are

employed and in-transit. M t be the (L+K)× (L+K) vector of one-period transition probabilities

of customers from all locations {1,...,L} and all in-between positions {1,...,K}. The number of in-

between positions is based on the mean number of periods it takes to travel from any locations i to

j, rounded to the nearest period (e.g., an average 16-minute trip would be considered 3.2 periods,

and then rounded to be 3 periods, with a single in-between position). mt−τji describes how many

drop-offs will occur in period t, which is the number of matches made in each pick-up location in

τji prior periods, and transition matrix M t−τji re-distributes those earlier matches to locations at

time t.

Given these objects, we can write the state transitions of employed cabs as follows, reflecting
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the transitions of new matches and already-employed taxis at time t, minus the time t drop-offs:

et+1 =
(
(et +mt)×M t

)
−
(
mt−τji ×M t−τji

)
. (16)

Next, I define the state transitions of vacant taxis. Let vt be the (L+K)× 1 vector of vacant

taxis in all search locations and in-between locations {1, ..., (L+K)}. Note that there may be taxis

in the in-between locations. For example, driving vacant to the airport may take more than one

period. Let vt be the (L + K) × (L + K) vector of one-period transition probabilities of vacant

taxis from all locations {1,...,L} and all in-between positions {1,...,K}. Then the state transitions

of vacant cabs is given by the vector of vacant cabs at the start of period t minus the period t

matches, multiplied by the policy functions in each period:

vt+1 = (vt −mt)× σt. (17)

Summing these two transition formulas defines the state transitions from t to t+ 1.

A.7 Proofs

Proof of Proposition 3.1

Part (i): Equilibrium Existence

Proof. In the last period in which actions may be taken, t=T-1, policy functions are simply deter-

mined by the payoffs attributable to search in the final period. The sum of policies among agents

in a particular location are summarized by the following

σT−1
ij ≡ P T−1

i [ja|ST−1] =
exp

(
pj(λ

T
j , v

T
j ) ·

∑
l Πjl/σε − cij

)
∑

k exp
(
pk(λ

T
k , v

T
k ) ·

∑
l Πkl/σε − cik

) . (18)

Further note that the final period state vTj can be described by vTj =
∑

i(v
T−1
i − mT−1

i ) ·
σT−1
ij +

(∑
i,τ m

T−τij
i M

T−τij
ij

)
from the definition of the transition kernel (see Section A.6). Let

σT−1 = σT−1
ij for all i ∈ {1, ..., L} and all j ∈ {1, ..., L}. In prior periods, policies are similarly

defined except for the inclusion of continuation values, which are bounded below by zero and

above by the maximum fare revenue attainable in the remaining periods up to T . For each period

let F (σt) define the above mapping between the vector σt ∈ SL×L to itself, where Sn denotes the

n−dimensional unit ball. Direct application of Brouwer’s Fixed-Point theorem implies the existence

of a fixed point in F , which by repeated application for t = 1, ..., T implies that the equilibrium σ̂t

for t = 1, ..., T exists.

Part (ii): Equilibrium Uniqueness
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Proof. To show that the fixed point defining equilibrium is unique, suppose there are two such

equilibria given by σT−1
1 and σT−1

2 . Without loss of generality this implies that there exists some

i, j for which σT−1
1,ij > σT−1

2,ij . Thus the ratio defined in equation 18 is greater for equilibrium 1.

Since all objects indexed by i in this ratio are taken to be exogenous and fixed (e.g., cij), this

further implies that σT−1
1,ij > σT−1

2,ij for all i. In turn equation 17 defining vacant state transitions

implies that vTj is higher under equilibrium 1 than in equilibrium 2. Since pj(λ
T
j , v

T
j ) is decreasing

in vTj , and since
∑
vTj = v̄ (i.e. the total number of taxis in the city is exogenous and fixed across

equilibria), the following must hold:

∑
k

exp

(
pk(λ

T
k , v

T
1,k) ·

∑
l

Πkl/σε − cik

)
<
∑
k

exp

(
pk(λ

T
k , v

T
2,k) ·

∑
l

Πkl/σε − cik

)
.

However, since for all i,
∑

k σik = 1 by construction, for some l 6= j we have σT−1
1,il < σT−1

2,il . By

the same logic as above, equation 18 then implies that pl(1) > pl(2). Thus, it must be that

∑
k

exp

(
pk(λ

T
k , v

T
1,k) ·

∑
l

Πkl/σε − cik

)
>
∑
k

exp

(
pk(λ

T
k , v

T
2,k) ·

∑
l

Πkl/σε − cik

)
.

This implies a contradiction, so there cannot exist two equilibria to this system. This proves

that policies σT−1(ST−1) and therefore also values V (ST ) are unique.

To show that uniqueness of values and policies in period t+ 1 implies uniqueness in period t, I

first show that two conditions hold.

Condition 1: Flow payoffs defined by equation 6 are bounded, continuous, and strictly concave

with respect to probabilities over actions σti .

To show this, I first re-write the choice-specific value functions (8). For exposition it will be

convenient to re-write current location i and choice-location k as arguments instead of subscripts.

W t(i, k,S) = p(k,S) · π̄ + (1− p(k,S)) · (−c(i, k)) + ε(a, k)+(
p(k,S) · V t+τ(k,k′)(k′,S) + (1− p(k,S)) · arg max

`∈A(k)
W t+τ(k,`)(k, `,S)

)
, (19)

Where π̄(k) =
∑

jM
t
kjΠkj . The above expression explicitly separates period payoff functions

from continuation values. To demonstrate concavity of the former, denote period payoffs as follows:
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F (i, k,S) = p(k,S) · π̄(k) + (1− p(k,S)) · (−c(i, k)) + ε(a, k).

Concavity implies that for γ ∈ (0, 1) and k, k′ ∈ A(i), that

F (i, γk + (1− γ)k′,S) > γF (i, k,S) + (1− γ)F (i, k′,S).

Since profits π̄(k) > 0 and fuel costs −c(i, j) < 0, and since location choice k only indexes a

discrete point of π̄, c(i, k), and ε(a, k), it is sufficient to show that p(k,S) is concave. Let v(k) be

the k-th element of the state S and λ̂(k) an exogenous parameter for location k. Then

p(k,S) = 1− exp

(
λ̂(k)

v(k)

)
.

Thus, concavity of p(k,S) follows from the convexity of −p(·, ·) via the convexity of exp(·).

Condition 2: Feasibility constraints Γ(S) on vacant state transitions are nonempty, compact and

convex.

Γ(St) represents the constraint set of possible actions to be taken by drivers. Constraints are

defined to be the set of locations A(i) adjacent to drivers in location i. Non-emptiness follows from

the adjacency of each location with itself. Compactness follows from the finite measure of agents

choosing over a finite set of adjacent locations. To show that Γ(S) is convex, let s1 ∈ Γ(S1) and

s2 ∈ Γ(S2). sj is a feasible allocation of vacant taxis starting from Sj . Given that vacant taxis are

non-atomic, it follows that for any a > 0, a · sj ∈ Γ(a · Sj). Further, (sj + sk) ∈ Γ(Sj + Sk) as one

can label drivers belonging to either set and independently assign feasible allocations according to

Γ(·). Therefore it follows that (a · sj + (1− a) · sk) ∈ Γ(a · Sj + (1− a) · Sk).
Together these conditions imply that the value functions defined by equation 6 are strictly

concave (c.f., Theorem 4.8 in Stokey and Lucas (1989)), and therefore since best response functions

defined by equation 9 are single-valued, there is a unique solution to the driver’s problem in period

t − 1. We may now implement backwards induction (c.f., Rust (2016)): substitute the recovered

V T
i (ST ) into the set of equations defining optimal policies at T-2 and repeat the above exercise

to recover unique V T−1
i (ST−1) and iterate until period 1, in which S1 is exogenous and known to

drivers.45

45More general results relating to equilibrium existence and uniqueness in large-scale games with a continuum of
agents may be found in Acemoglu and Jensen (2015) and Light and Weintraub (2021).
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A.8 Computational Details

A.8.1 Taxi Equilibrium Algorithm

The algorithm that I implement takes as inputs all model primitives, parameters, and an initial

state. It returns the equilibrium state and policy functions for each location and each time period.

Equilibrium states constitute a L × T matrix (i.e., how many taxis are in each location in each

period), and equilibrium policy functions constitute a L × L × T matrix (i.e., the probability of

vacant taxi transition from any location i ∈ {1, ..., L} to any location j ∈ {1, ..., L} in each period).

The algorithm uses backwards iteration to solve for continuation values and forward iteration to

generate transition paths. Each component repeats, updating the state and policy vectors in each

iteration. The process terminates when all policies and continuation values converge to a fixed

point. The algorithm is described below.

Algorithm 1 Taxi Equilibrium Algorithm

1: Input empirical matches {m̃t
ij} and m̃ = {

∑
j m̃

t
ij}

2: Fix parameter value σε.
3: Set counter k = 0
4: Input initial and future states guess St0 for t = 1, ..., T .
5: repeat
6: for t = T to 1 do . Backwards Iteration
7: Compute V t

i (Stk|m̃t) for all i
8: end for
9: for t = 1 to T − 1 do . Fwd. Iteration to T for each step back

10: Derive choice-specific value functions W t
i (j,St) for all t, i, j per equation 8

11: Find policy fcts. σtk(W
t+1
k ) per equation 7

12: Given Stk compute transition to St+1
k per equations 16 and 17.

13: end for
14: Update next period state St+1

k+1 ← S̃
t+1

15: Update next period continuation values as V t+1(St+1
k+1, m̃

t)
16: k ← k + 1
17: until |V t

k − V t
k−1| ≤ ε ∀t

The Taxi Equilibrium Algorithm begins with an initial guess of the state vector S0 = {St} for

all t. With S0 as well as observations of the empirical distributions of taxi-passenger matches, m̃,

I can compute value functions V t
i (S0; m̃) for each i and t via backwards induction, beginning at

period T .46Next, using the value functions, I compute choice-specific value functions and optimal

46Note this process requires integrating over future period states and shocks. State transitions are deterministic
and thus the first integral is trivial. To integrate over driver-specific shocks εj,a I rely on the fact that for discrete-
choice logit models there is a closed form expression for the conditional expectation of unobservables given by
E[ε|j,S] = γ0 −

∑
j log(σi(j|S) · σi(j|S)) where γ0 is Euler’s constant. See e.g., Arcidiacono and Ellickson (2011).
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policies as in equation 9. Next, I use the computed policy functions and, starting at time t = 1

at S1
0 , I forward simulate the optimal transition paths and update the initial state for t = 2, ..., T ,

resulting in a new guess of the state, S1. With S1, I again combine the same observations m̃ to

update value functions V t
i (S1; m̃). This process repeats until value and policy functions converge.

A.8.2 Initial conditions

Recall that St0 is a state vector of the number of vacant taxis in each location at time t. The initial

guess of the state in each period, St0, is assigned by allocating the exogenous total number of taxis

according to the empirical distribution of matches. As the algorithm runs, each vector St0 for t ≥ 2

is updated as t − 1 transitions are computed given the t − 1 initial state and value functions for

t, t+ 1, ..., T . Only one term, S1
0 remains exogenously chosen.

To mitigate any issues related to this remaining first-period exogenous initial state, I define

t = 1 as 6:00am. In this period, the assumption that all available cabs are actively searching or

with customers is less credible.47 Nevertheless, by starting the equilibrium algorithm at 6:00am, a

wide range of initial conditions quickly wash out within the first hour. This is verified by setting

alternative initial conditions and comparing equilibrium levels of taxi supply across locations. As

results are reported starting at 7:00am, the spatial distribution of taxis reaches an equilibrium

mostly unaffected by the initial state assumption. Table A5 shows the impact of more extreme

initial condition assumptions on the equilibrium supply of taxis under increasingly heterogeneous

starting points. The baseline case, as described above, is compared with (1) a uniform initial

distribution and (2) a distribution in which all initial vacant cabs are distributed at edge locations:

those locations adjacent to the boundaries of the map.48 The latter edge distribution is meant to

simulate the case in which taxis start the day by driving from garages where they are stored. The

locations of these garages are not available in my data, so this condition serves as a check on any

misspecification due to unobserved initial conditions, where all taxis are stored in outer boroughs.

In both cases, the equilibrium supply of taxis is very close to the baseline, with average percentage

differences across all i, t pairs no worse than 2.1% and average level differences no worse than 4.2

vacant taxis.

47Recall that the data do not allow for distinguishing whether fewer matches in the morning are due to low supply
or demand; and thus it is impossible to say how many cabs are actually on the road at any point.

48Boundary locations are all peripheral locations with adjacent access to the outer boroughs and New Jersey. This
includes all locations in Manhattan with bridges and those bordering 125th street, all Brooklyn and Queens locations,
and each Airport.
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Table A5: Alternative Initial Conditions

Initial Condition 4vti (mean) %4vti (mean)

Baseline 0.0 0.0
Uniform 4.228 0.020
Edge -3.839 -0.021

This table shows the change in taxis’ spatial equilibrium distribution given changes in initial conditions. Baseline is
the initial condition used throughout the paper, as described above. Uniform imposes an initial distribution that is
uniform across all locations at 6am. Edge imposes an initial distribution that uniformly puts all vacant taxis across
edge locations: all peripheral locations with adjacent access to the outer boroughs and New Jersey.

A.9 Estimation Details

A.9.1 Details on Estimating σε

I estimate σε for each of August 2012 and September 2012. These are obtained numerically through

the use of a nonlinear program solver. In order to demonstrate how this estimate relates to the

underlying moments, I conducted a grid-search analogue in order to evaluate the impact of this

parameter on the GMM criterion function. Figure A4 displays the criterion value for the August

σε parameter and shows that this function is relatively well-behaved despite some visible noise due

to simulation error.

The grid in this figure displays objective function values for σε in the range of 1.2 to 4, in

increments of 0.01. For values of σε below this range, driver behavior becomes increasingly dictated

by the observable profit function compared with any unobservables. This creates problems with

convergence in the underlying value function iteration needed to solve for equilibrium by introducing

more rigid cycling in each iteration. Fortunately, the criterion function is well-behaved enough that

an estimate of σε can be obtained.

A.9.2 Details on Estimating αr

The variance of matches The matching function given in 3 describes the number of average

number of matches produced in an area with vti taxis and demand parameter λti. Estimating α

will require computing the variance in matches produced by the daily draws uti from each i, t-

specific Poisson distribution. To compute this, I first determine the day-specific matching function

md
i (u

t
i, v

t
i) that would give rise to the equation 3. This function is given by

m(uti, v
t
i ;αr) = vti

(
1−

(
1− 1

αrvti

)uti)
. (20)
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Let ρ =
(

1− 1
αrvti

)
. From here we can integrate equation 20 over the distribution of uti.

E[mi|vti , λti] = vti

∞∑
k=0

(
1−

(
1− 1

αrvti

)k)
fλti(k)

= vti − vti
∞∑
k=0

ρkfλti(k)

= vti − vti
∞∑
k=0

ρk(λti)
ke−λ

t
i

k!

= vti − vti
e−λ

t
i

e−ρλ
t
i

∞∑
k=0

(ρλti)
ke−ρλ

t
i

k!

= vti − vti · e−λ
t
i(1−ρ)

= vti(1− e
− λti
αrv

t
i ).

The second to last equation follows as integrating the probability mass function of the Poisson

distribution over its entire support is equal to one. I now repeat the exercise to compute the variance

of matches implied by the stochastic process governing {uti} as E[m2
i |vti , λti]− E[mi|vti , λti]2. First,
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following directly from equation 20, we have

E[mi|vti , λti]2 = (vti)
2(1− e

− λti
αrv

t
i )2

= (vti)
2(1− 2e

− λti
αrv

t
i + e

− 2λti
αrv

t
i ),

and second,

E[m2
i |vti , λti] = v2

∞∑
k=0

(
1−

(
1− 1

αrvti

)k)2

fλti(k)

= v2
∞∑
k=0

(
1− ρk

)2
fλti(k)

= v2
∞∑
k=0

(
1− 2ρk + ρ2k

)
fλti(k)

= v2

(
1− 2

∞∑
k=0

ρkfλti +

∞∑
k=0

ρ2kfλti(k)

)

= v2

(
1− 2e

− λti
αrv

t
i +

e−λ
t
i

e−ρ
2λti

∞∑
k=0

(ρ2λti)
ke−ρ

2λti

k!

)

= v2

(
1− 2e

− λti
αrv

t
i + e−λ

t
i(1−ρ2)

)

= v2

(
1− 2e

− λti
αrv

t
i + e−2 λ

αv
+ λ
α2v2

)
.

Putting these terms together gives,

V ar[mi|vti , λti] = E[m2
i |vti , λti]− E[mi|vti , λti]2 (21)

=
(
vti
)2(

e
−2

λti
αrv

t
i

+
λti
α2rv

2
i − e

−2
λti
αrv

t
i

)
(22)

=
(
vti
)2
e
−2

λit
αr

1
vit

(
e
λit
α2r

1

v∗2
it − 1

)
. (23)

Accounting for the variance of vti Equation 21 is derived under Assumption 3 that the variance

of vti in each region r is zero. To motivate this assumption, Table A6 compares the outcome of
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two simulation exercises. First is a simulation over one month of the market, in which demand is

drawn in each i, t from the corresponding λti parameters. This process generates some variance in

the distribution of taxis. From this simulation the variance of matches across days of the month

are computed. Second, a second simulation is computed that is identical except imposes that the

level of taxis is fixed at the equilibrium forecast generated by the model. In essence this shuts

down the possibility that any variance in matches is attributable to variance in taxis. Finally, the

table reports the theoretical variance in matches via equation 21. This comparison shows that the

variances are for the most part not statistically distinguishable from one another.

Table A6: Simulated Variance Comparison

Description
Region

Lower Manhattan Midtown Manhattan Uptown Manhattan Brooklyn/Queens

Simulated V ar(mt
i)

16.553 37.297 18.350 1.926
(0.446) (1.048) (0.335) (0.086)

Simulated V ar(mt
i) 15.2646 35.2556 17.8758 1.8484

(Fixed vti) (0.375) (0.753) (0.324) (0.089)

Theoretical V ar(mt
i) 14.801 34.378 17.869 1.939

(Fixed vti)

95% C.I. in parentheses

This table shows the variance of matches in New York Regions I-IV, generated under two sets of simulations of one
month of data each. 95% Confidence intervals are reported. Confidence intervals are based on standard deviations
of variance estimates produced by replicating each simulation 150 times and computing standard errors for each
variance measure.

The result that the variance of taxis has little apparent bearing on the variance of matches is

not surprising, as taxis most often outnumber customers across the city. Even with some degree of

search frictions, this discrepancy implies that variation in taxis will have less impact than variation

in demand. Figure A5 Panel (a) shows the ratio of taxi shows simulated ratio of variation in taxis

to demand across regions. Panel (b) shows the ratio of taxis in levels to that of demand across

regions. While there are many reversals (see detailed estimates in Figure A7), the average ratio of

taxis-to-customers across regions is between 3-10 throughout most of the day.

Together these results suggest that the variance of taxis can be regarded as negligible with

respect to their impact on the overall variance of matches used to identify the efficiency parameters

αr.
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Figure A5: Equilibrium Variance and Level Ratios of Supply and Demand

A.10 Detailed Estimation Results

A.10.1 Aggregate Supply and Demand by Time-of-day

Figure A6 shows aggregate supply and demand results, summing all 39 locations into the five

regions corresponding to Figure 1. The results above demonstrate that the while taxi supply

maintains some coverage across all locations throughout the day, there are intra-day trends in

spatial availability and demand. Spatial mismatch is evident, as the relative proportions of supply

and demand are not the same across each region.

A.10.2 Supply and Demand by Location

Figures A7 and A8 show detailed results of supply and demand in all locations. Note that location

numbers 1-34 roughly track from South to North in Manhattan, locations 35-37 track South to

North from Brooklyn to Queens, location 38 is LaGuardia airport and location 39 is JFK airport.

We see that most locations have a surplus of taxis except for a few areas of very high demand.

Lower Manhattan, parts of Midtown Manhattan and far North-east Manhattan all demonstrate

particularly large constraints in the ratio of vacant taxis to demand. All locations demonstrate

some search frictions on both sides of the market, but we see here that the impact is felt more on

the taxi side.
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Figure A6: Equilibrium Vacant Taxis: Weekdays 7a-4p, 9/2012 (Five Region Aggregates)

This figure depicts the equilibrium spatial distribution of taxis and mean arrival of customers across the Five Regions
shown in Figure 1. Results across all 39 locations are summed to these five areas. Results are depicted for the
weekday taxi drivers’ day shift, from 7a-4p in September 2012.

A.10.3 Transitions

Table A7 shows the five-region average per-period transition matrix of vacant taxis in Panel (a)

and of all taxis, vacant and employed, in Panel (b). Comparing these two transitions shows how

the spatial distribution of taxi supply is driven by customer destination preferences versus taxis’

search behavior. For example vacant taxis are much less likely to leave from their current location

than an average taxi, vacant or not. The movement of vacant taxis also mirrors that shown in Table

A3, Panel (b), which depicts the transitions from drop-off location to next pickup location. The

fact that Table A7 shows slightly more dispersion (i.e. more weight on the off-diagonal elements)

is natural: it reflects that the average time from drop-off to the next pickup is longer than a period

(12 minutes 39 seconds, or about 2.5 periods).

A.10.4 Value Functions

Figure A9 shows the evolution of value functions by time of day. Each series is the value for a

single location. The high correlation between each value function reflects the equilibrium result

that drivers’ policy functions ensure that there is no spatial arbitrage possible. The remaining

differences between each location’s value is due to the transportation cost that prevents perfect

cross-location arbitrage. As the day reaches its 4pm end, the value of search in each location

systematically drops to zero.
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Figure A7: Detailed Estimates of vti and λti (1)
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Figure A8: Detailed Estimates of vti and λti (2)

Table A7: Equilibrium Capacity Flows

Destination
Region I Region II Region III Region IV Region V

O
ri

gi
n

Region I 0.707 0.137 0.000 0.454 0.088
Region II 0.274 0.607 0.086 0.000 0.171
Region III 0.000 0.248 0.901 0.000 0.363
Region IV 0.011 0.000 0.000 0.361 0.072
Region V 0.009 0.008 0.013 0.186 0.307

(a) Vacant Taxis

Destination
Region I Region II Region III Region IV Region V

O
ri

gi
n

Region I 0.514 0.133 0.011 0.286 0.070
Region II 0.391 0.603 0.142 0.139 0.145
Region III 0.054 0.239 0.832 0.083 0.342
Region IV 0.023 0.006 0.002 0.414 0.083
Region V 0.018 0.019 0.013 0.078 0.361

(b) All Taxis

Data in the table are aggregated across day-shift hours and regions as described in Figure 1. Panel (a) depicts the
transition density of vacant taxis in each period and Panel (b) depicts the transition of vacant taxis between each
drop-off and the same driver’s subsequent pickup.
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Figure A9: Equilibrium Value Functions

This figure depicts the equilibrium value functions for all 39 locations, by time of day, estimated from August 2012
data. Each line depicts a separate location. The highest-valued function is that of LGA airport and the least-valued
function is that of JFK airport. All other locations’ values fall in-between. Values do not include any medallion
leasing fees.

A.10.5 Model Fit

The primary moments used in this study are the spatial and inter-temporal patterns of taxi-

passenger matches. Here I describe and analyze the model fit.

Since taxis’ dynamic spatial equilibrium is computed by the inversion procedure described in

Section 4.2, this part of the model fits the taxi-passenger matches data perfectly by construction.

In other words, given estimated parameters, the model would generate a set of equilibrium matches

across periods and location that perfectly line up with the data.

For the model to generate counterfactuals and welfare estimates, I rely on the estimation of

demand elasticities. The ability of the model to fit data thus rests on the fit associated with

the demand model as well as the subsequent computation of equilibrium. Figure A10 shows the

predicted and actual spatial heterogeneity of demand and matches respectively. Each comparison

involves an aggregation over 164,268 (39 x 39 x 108) predictions of λti at observed prices. Demand

fits quite well across time and space. Lower Manhattan demand is under-predicted in the morning

while Uptown demand is over-predicted, but the ordering across regions and broad time trajectories

lines up well.

Computing equilibrium matches requires demand predictions as inputs. The model uses all

demand estimates to compute equilibrium supply in each location and time, which leads to 4,212
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(b) Fit of Equilibrium Matches

Figure A10: Model Fit by Aggregate Regions and Time

This figure demonstrates model fit across demand and matches. The left panel shows the fit of the demand model. The
right panel shows the fit of the equilibrium model to the total number of matches. Each series displayed aggregates
origin-destination-specific series into five origin-based regions as shown on Figure 1.

(38 x 108) predictions on matches. Since taxi supply is increasing in demand for any location and

time, any bias in demand will be exacerbated in computing matches for two reasons. First, demand

is most often the short side of the market, so that an additional unit of demand leads to almost one

additional match. Second, in equilibrium taxi drivers’ search in a location increases with demand

in that location, which implies that matches will increase with demand from both a direct and

indirect effect. Nevertheless, the model is able to fairly-well reproduce a complex system of spatial

and inter-temporal patterns of matches.
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A.10.6 Impact of the Aggregate Supply Assumption

Estimation results are ultimately premised on the assumption that 11,500 taxis are in operation

over the day. While the true number of taxis in operation in any period is unobserved, I derive

this number based on an analysis presented in Section A.5. However, per Figure A3 the number

may be lower in the morning hours, particularly before 10am. To investigate the relevance of this

assumption I re-compute measures of equilibrium frictions under the assumption that only 9,000

taxis are in operation. Under this 21% drop in taxi supply, total demand through the day is

estimated to be 4.85% lower, per-period unserved trips are 20.5% lower and per-period vacant taxis

are 25% lower. While 9,000 is clearly very low compared to observable taxi activity after about

8am, it nevertheless suggests that friction results will scale roughly with the number of vacant taxis

assumed to be in the market. In addition, Section A.11.3 computes all policy experiments below

from a more limited time frame of 10am-4pm and finds very similar results.

A.11 Details on Counterfactual Results

A.11.1 Welfare Calculation

Consumer welfare is computed by integrating under the the estimated CES demand curves in each

origin, destination, time pair (i.e., each i, j, t). The integral can be computed analytically as follows:

Wijt(m
t
ij , λ̂

t
ij , π

t
ij ,β) =

mt
ij(λ̂

t
ij , v

t
i(λ̂))

λ̂tij(π
t
ij)︸ ︷︷ ︸

frac. successful matches

·
(

β1,s,ι

β1,s,ι + 1
· e−

β0,i,t,s,ι
β1,s,ι · λ̂ijt(πtij)

β−1
1,s,ι+1 − λ̂ijt(πtij) · πtij

)
︸ ︷︷ ︸

total available surplus at price πtij

, (24)

where β0,i,t,s,ι and β1,s,ι are the estimated demand parameters, λ̂ijt is the predicted level of

demand given price πtij , and vti(λ̂) is the equilibrium mass of taxis in each location (a function of

the distribution of demand across locations and time). In counterfactuals I incorporate waiting

time elasticities into this calculation. To do this I augment equation 1 as follows:

ln(λtij(π
t
ij)) = β0,i,t,s,ι + β1,s,ιln(πtij) + β2,i,t∆wi,j,t + ηi,t,s,ι, (25)

where ∆wi,j,t, is the percentage change in the consumer waiting time measure between the base-

line case and the counterfactual waiting time evaluated as if there were no waiting time elasticity.

To create the variable ∆wi,j,t I first predict demand and compute equilibrium once with no wait-

ing time elasticity, then I generate the predicted change in waiting times, and then I re-compute
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demand with the calibrated waiting time elasticity β2,i,t = −1 and again re-compute equilibrium.

After the second round is complete, I evaluate welfare. This is a computationally intensive process,

so I do not conduct additional iterations. However, after many trials adding one additional iteration

the differences in outcomes seem to be very small.

Finally taxi profits are computed as follows:

W taxi
ijt (mt

ij , λ̂
t
ij , π

t
ij , cij) =

mt
ij(λ̂

t
ij , v

t
i(λ̂))

λ̂tij(π
t
ij)︸ ︷︷ ︸

frac. successful matches

(
λ̂ijt(π

t
ij) ·

(
πtij − cij

))︸ ︷︷ ︸
trip revenues at price πtij

, (26)

where cij is the fuel cost for a trip from i to j.

A.11.2 Spatial Impact of Counterfactuals

Figure A12 maps the per-period average impact of each welfare-optimized price counterfactual

across space. While matches improve everywhere, they particularly improve in centralized, high-

density locations. Welfare falls in some regions as lower prices induce new marginal consumers

into the market with lower trip valuations. By virtue of random matching, some of these marginal

consumers receive trips over the infra-marginal, higher-valuation consumers.

Figure A13 maps the per-period average impact of each benchmark technology counterfactual

across space. In contrast to Figure A12 it shows that welfare improves more uniformly when

technologies enable better matching to high valuation consumers.

A.11.3 Robustness to Omitting the Early Morning

Figures A2 and A3 suggest that, despite a consistent daily participation rate of drivers, many fewer

matches occur in the period between 7a-9a. One concern is that the total supply of vacant taxis is

unobservably low during this early period, as only the time of the first passenger match is observed

and not the drivers’ actual start times. By assuming supply to be fixed at 11,500 through the day,

the model may attribute low match rates in the morning to low demand instead of low supply.

Table A8 demonstrates that counterfactual results are robust to omitting the first two hours of

the day. It shows that optimal pricing patterns are very similar to those discussed in Section 6

and displayed in Table 10; all optimized pricing policies lower average prices, increase matches by

around 20-30% and increase utilization rates by about 7-10%.

A.11.4 Robustness to Alternative Waiting Time Elasticities

On the basis of empirical evidence from recent work, I calibrate a waiting time elasticity equal to -

1.0. In this section I re-compute the main counterfactual results under different calibrated elasticity
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Table A8: Efficient Pricing and Matching Technology: Counterfactual Results

Price Type
Efficiency-optimized Total Consumer Consumer

Matches
Taxi

Multipliers Surplus Surplus Rent Share Utilization
θ1 θ2 θ3 θ4 (,000 USD) (,000 USD) (percent) (,000) (percent)

Baseline - 8/2012 1.00 1.00 1.00 1.00 5661.6 2425.3 42.8 176.3 45.3

Location-Based Pricing

Max Total Surplus 0.84 0.94 0.82 1.24 4255.1 (+3.8 %) 1935.6 (+8.9 %) 45.5 198.0 (+12.3 %) 49.9
Max Cons. Surplus 0.84 0.94 0.82 1.24 4255.1 (+3.8 %) 1935.6 (+8.9 %) 45.5 198.0 (+12.3 %) 49.9
Max Matches 0.89 0.95 0.75 1.20 4238.9 (+3.5 %) 1919.4 (+7.9 %) 45.3 200.9 (+14.0 %) 50.6

Time-Based Pricing

Max Total Surplus . 0.94 0.89 0.94 4243.0 (+3.6 %) 1923.4 (+8.2 %) 45.3 189.2 (+7.3 %) 48.1
Max Cons. Surplus . 0.94 0.89 0.94 4243.0 (+3.6 %) 1923.4 (+8.2 %) 45.3 189.2 (+7.3 %) 48.1
Max Matches . 0.81 0.89 0.97 4185.1 (+2.1 %) 1865.7 (+4.9 %) 44.6 194.7 (+10.4 %) 49.2

Non-Linear Pricing

Max Total Surplus 0.99 0.98 -0.20 . 4249.4 (+3.6 %) 1928.3 (+8.4 %) 45.4 187.0 (+6.1 %) 49.0
Max Cons. Surplus 0.99 0.98 -0.20 . 4249.4 (+3.6 %) 1928.3 (+8.4 %) 45.4 187.0 (+6.1 %) 49.0
Max Matches 0.81 1.01 0.25 . 4178.8 (+1.9 %) 1857.5 (+4.4 %) 44.5 195.8 (+11.1 %) 47.4

Technology Improvement (at baseline prices)

Efficient Incentives . . . . 6686.0 (+18.1 %) 2850.8 (+17.5 %) 42.6 207.5 (+17.7 %) 51.7
Matching Technology . . . . 7423.7 (+31.1 %) 2949.0 (+21.6 %) 39.7 248.3 (+40.8 %) 62.7

This table shows, for each weekday period from 10a-4p, the estimated change in total welfare (profits plus consumer
surplus), consumer surplus, the consumer surplus share of total surplus, total matches, and utilization rates across
each counterfactual price policy. Each pricing policy shown is a rule that applies to four policy-specific multipliers on
the baseline price pijt for every route, given by $2.50 + $2.00/mile. In location-based pricing, the multipliers θk(i)
apply to pijt where k(i) ∈ {1, 2, 3, 4} indexes the region of location i according to Figure 1. In time-based pricing,
the multipliers θk(t) apply to pijt where k(t) ∈ {1, 2, 3, 4} respectively indexes the time ranges of 7a-9a (omitted here
by construction), 10a-11a, 12p-1p, 2p-4p. In non-linear pricing, the multipliers θk(i, j) apply to pijt where k(i, j) ∈
{1, 2, 3} are coefficients which change existing tariffs according to θ1 · base fare + θ2 · fare per-mile + θ3 · fare per-mile2.
The final row depicts equilibrium outcomes under a simulated matching technology in which the matching function
takes the form mt

i = min(λti, v
t
i). This last counterfactual is computed at baseline prices.

values of -1.2 and -0.8. Tables A9 and A10 summarize the results. They imply that the qualitative

findings are robust: from an efficiency perspective, overall prices in Manhattan are too high. More

granularly, lower and upper Manhattan locations are optimally lower priced than Midtown and

Brooklyn, the afternoon hours should be priced slightly lower than the morning hours, and some

small convexity in the distance price is optimal. Changing the waiting time elasticity impacts how

much price decrease is optimal. This result is intuitive; the less responsive consumers are to waiting

relative to their price elasticity, the more they will tolerate higher waiting times in exchange for

lower prices.
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Table A9: Efficient Pricing and Matching Technology: Counterfactual Results

Price Type
Efficiency-optimized Total Consumer Consumer

Matches
Taxi

Multipliers Surplus Surplus Rent Share Utilization
θ1 θ2 θ3 θ4 (,000 USD) (,000 USD) (percent) (,000) (percent)

Baseline - 8/2012 1.00 1.00 1.00 1.00 5726.2 2452.6 42.8 211.3 42.2

Location-Based Pricing

Max Total Surplus 0.73 0.87 0.65 1.00 5967.9 (+5.0 %) 2718.0 (+11.0 %) 45.5 219.7 (+24.6 %) 54.9
Max Cons. Surplus 0.71 0.87 0.65 0.99 5966.6 (+5.0 %) 2728.4 (+11.4 %) 45.7 219.8 (+24.7 %) 54.9
Max Matches 0.82 0.83 0.65 0.65 5957.9 (+4.8 %) 2721.2 (+11.1 %) 45.7 221.4 (+25.6 %) 55.2

Time-Based Pricing

Max Total Surplus 0.84 0.90 0.74 0.83 5893.3 (+3.7 %) 2656.9 (+8.5 %) 45.1 206.8 (+17.3 %) 52.4
Max Cons. Surplus 0.82 0.89 0.75 0.83 5893.3 (+3.7 %) 2657.0 (+8.5 %) 45.1 207.1 (+17.5 %) 52.4
Max Matches 0.85 0.77 0.78 0.87 5845.5 (+2.8 %) 2608.5 (+6.5 %) 44.6 209.6 (+18.9 %) 52.6

Non-Linear Pricing

Max Total Surplus 0.86 1.04 -0.24 . 5950.3 (+4.6 %) 2673.1 (+9.1 %) 44.9 204.3 (+15.9 %) 53.1
Max Cons. Surplus 0.83 1.06 -0.25 . 5946.2 (+4.6 %) 2708.5 (+10.6 %) 45.5 207.4 (+17.6 %) 53.7
Max Matches 0.66 0.99 0.25 . 5788.6 (+1.8 %) 2551.0 (+4.1 %) 44.1 220.1 (+24.8 %) 51.9

Technology Improvement (at baseline prices)

Efficient Incentives . . . . 6551.8 (+15.7 %) 2791.2 (+15.1 %) 42.6 242.5 (+16.1 %) 51.6
Matching Technology . . . . 7580.3 (+32.4 %) 2883.2 (+17.6 %) 38.0 247.4 (+17.1 %) 62.7

This table replicates Table 10 except with a waiting time elasticity of demand set to -0.8.

Table A10: Efficient Pricing and Matching Technology: Counterfactual Results

Price Type
Efficiency-optimized Total Consumer Consumer

Matches
Taxi

Multipliers Surplus Surplus Rent Share Utilization
θ1 θ2 θ3 θ4 (,000 USD) (,000 USD) (percent) (,000) (percent)

Baseline - 8/2012 1.00 1.00 1.00 1.00 5726.2 2452.6 42.8 211.3 42.2

Location-Based Pricing

Max Total Surplus 0.91 0.89 0.86 1.25 5852.4 (+2.9 %) 2558.2 (+4.5 %) 43.7 192.7 (+9.3 %) 49.1
Max Cons. Surplus 0.90 0.86 0.86 1.25 5844.6 (+2.8 %) 2608.2 (+6.5 %) 44.6 192.4 (+9.1 %) 49.0
Max Matches 0.91 0.92 0.71 1.03 5748.0 (+1.1 %) 2511.7 (+2.6 %) 43.7 199.4 (+13.1 %) 50.5

Time-Based Pricing

Max Total Surplus 0.79 0.97 0.89 0.86 5829.1 (+2.5 %) 2591.0 (+5.8 %) 44.4 190.3 (+8.0 %) 48.6
Max Cons. Surplus 0.82 0.96 0.89 0.86 5828.3 (+2.5 %) 2591.9 (+5.8 %) 44.5 190.3 (+8.0 %) 48.6
Max Matches 0.88 0.84 0.86 0.93 5786.1 (+1.8 %) 2549.3 (+4.1 %) 44.1 191.9 (+8.9 %) 48.9

Non-Linear Pricing

Max Total Surplus 1.00 0.89 -0.28 . 5910.8 (+3.8 %) 2664.5 (+8.7 %) 45.1 187.9 (+6.5 %) 50.6
Max Cons. Surplus 1.00 0.88 -0.28 . 5910.8 (+3.8 %) 2669.3 (+8.9 %) 45.2 188.1 (+6.6 %) 50.6
Max Matches 0.69 1.23 0.25 . 5726.7 (+0.6 %) 2485.5 (+1.4 %) 43.4 198.9 (+12.7 %) 47.6

Technology Improvement (at baseline prices)

Efficient Incentives . . . . 6812.0 (+20.3 %) 2906.9 (+19.9 %) 42.7 251.9 (+20.6 %) 53.6
Matching Technology . . . . 7642.7 (+33.5 %) 2822.7 (+15.1 %) 36.9 254.6 (+20.5 %) 64.5

This table replicates Table 10 except with a waiting time elasticity of demand set to -1.2.
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Figure A11: Spatial Impact of Counterfactual Equilibria (con’t.)

This figure shows the impact of each counterfactual on matches and welfare, averaged across the day-shift hours of
a weekday, on each of the 39 locations. The left-hand side depicts the period-by-period average change in matches
against the predicted baseline equilibrium of August 2012. The right-hand side depicts the changes in welfare.
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Figure A12: Counterfactual Equilibrium Mapped

This figure shows the impact of each counterfactual on matches and welfare, averaged across the day-shift hours of
a weekday, on each of the 39 locations. The left-hand side depicts the period-by-period average change in matches
against the predicted baseline equilibrium of August 2012. The right-hand side depicts the changes in welfare.
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